精英家教網 > 高中數學 > 題目詳情

【題目】將一個總體的100個個體編號為0,1,2,99,并依次將其分為10個組,組號為01,2,,9.要用系統(tǒng)抽樣法抽取一個容量為10的樣本,如果在第0(號碼為0—9)隨機抽取的號碼為2,則抽取的10個號碼為______________.

【答案】2,1222,32,42,52,6272,82,92.

【解析】

由總體容量及組數求出間隔號,由0組抽取的號碼,確定以后每組的序號,即可得到答案.

解:總體為100個個體,依編號順序平均分成10個小組,則間隔號為,

在第0組抽取的號碼為2,為該組的第3個數,按照系統(tǒng)抽樣則以后每組都抽取第3個數,

則抽取的10個號碼分別是:212,2232,4252,62,72,82,92.

故答案為:2,1222,3242,5262,72,8292.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知正項數列的前項和為,且,等比數列的首項為1,公比為),且,,成等差數列.

(1)求的通項公式;

(2)求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年4月4日召開的國務院常務會議明確將進一步推動網絡提速降費工作落實,推動我國數字經濟發(fā)展和信息消費,今年移動流量資費將再降30%以上,為響應國家政策,某通訊商計劃推出兩款優(yōu)惠流量套餐,詳情如下:

套餐名稱

月套餐費/元

月套餐流量/M

A

30

3000

B

50

6000

這兩款套餐均有以下附加條款:套餐費用月初一次性收取,手機使用流量一旦超出套餐流量,系統(tǒng)就會自動幫用戶充值2000M流量,資費20元;如果又超出充值流量,系統(tǒng)再次自動幫用戶充值2000M流量,資費20元,以此類推。此外,若當月流量有剩余,系統(tǒng)將自動清零,不可次月使用。

小張過去50個月的手機月使用流量(單位:M)的頻數分布表如下:

月使用流量分組

[2000,3000]

(3000,4000]

(4000,5000]

(5000,6000]

(6000,7000]

(7000,8000]

頻數

4

5

11

16

12

2

根據小張過去50個月的手機月使用流量情況,回答以下幾個問題:

(1)若小張選擇A套餐,將以上頻率作為概率,求小張在某一個月流量費用超過50元的概率.

(2)小張擬從A或B套餐中選定一款,若以月平均費用作為決策依據,他應訂購哪一種套餐?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。

I)求應從小學、中學、大學中分別抽取的學校數目。

II)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析,

1)列出所有可能的抽取結果;

2)求抽取的2所學校均為小學的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個總體容量為60,其中的個體編號為0001,02,59.現(xiàn)需從中抽取一個容量為7的樣本,請從隨機數表的倒數第5(下表為隨機數表的最后5)1112列的18開始,依次向下,到最后一行后向右,直到取足樣本,則抽取樣本的號碼是_____________

95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95

38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80

82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50

24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49

96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1的參數方程為(t為參數),以原點O為極點,以x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為.

(1)求曲線C1的極坐標方程和C2的直角坐標方程;

(2)射線OP:(其中)與C2交于P點,射線OQ:與C2交于Q點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數

(1)當時,求函數上的最值;

(2)若函數上單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點,焦點在x軸上的橢圓C的離心率為,且經過點M(1,),過點P(2,1)的直線l與橢圓C相交于不同的兩點AB.

1)求橢圓C的方程;

2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項目在冬奧會金牌零的突破.某高校為調查該校學生在冬奧會期間累計觀看冬奧會的時間情況.收集了200位男生、100位女生累計觀看冬奧會時間的樣本數據(單位:小時).又在100位女生中隨機抽取20個人.已知這20位女生的數據莖葉圖如圖所示.

(1)將這20位女生的時間數據分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;

(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;

(3)以(1)中的頻率估計100位女生中累計觀看時間小于20個小時的人數.已知200位男生中累計觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認為“該校學生觀看冬奧會累計時間與性別有關”.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:.

查看答案和解析>>

同步練習冊答案