9.已知集合A={x|x(x-3)<0},B={-1,0,1,2,3},則A∩B=( 。
A.{-1}B.{1,2}C.{0,3}D.{-1,1,2,3}

分析 先分別求出集合A,B,由此利用交集定義能求出A∩B.

解答 解:∵集合A={x|x(x-3)<0}={x|0<x<3},
B={-1,0,1,2,3},
∴A∩B={1,2}.
故選:B.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖1,在直角梯形ABCD中,AB⊥BC,BC∥AD,AD=2AB=4,BC=3,E為AD中點(diǎn),EF⊥BC,垂足為F.沿EF將四邊形ABFE折起,連接AD,AC,BC,得到如圖2所示的六面體ABCDEF.若折起后AB的中點(diǎn)M到點(diǎn)D的距離為3.

(Ⅰ)求證:平面ABFE⊥平面CDEF;
(Ⅱ)求六面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$則稱函數(shù)f(x)是[a,b]上的“中值函數(shù)”.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$是[0,m]上的“中值函數(shù)”,則實(shí)數(shù)m的取值范圍是(  )
A.$({\frac{3}{4},1})$B.$({\frac{3}{4},\frac{3}{2}})$C.$({1,\frac{3}{2}})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.將函數(shù)f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)的圖象向右平移$\frac{π}{4ω}$個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上為增函數(shù),則ω的最大值為(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}是公差不為0的等差數(shù)列,首項(xiàng)a1=1,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=an+2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在區(qū)間(0,4)上任取一實(shí)數(shù)x,則2x<2的概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=|log3x|,實(shí)數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2,n]的最大值為2,則$\frac{n}{m}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.本學(xué)期,學(xué)校食堂為了更好地服務(wù)廣大師生員工,對(duì)師生員工的主食購(gòu)買情況做了一個(gè)調(diào)查(主食只供應(yīng)米飯和面條,且就餐人數(shù)保持穩(wěn)定),經(jīng)調(diào)查統(tǒng)計(jì)發(fā)現(xiàn)凡是購(gòu)買米飯的人下一次會(huì)有20%的人改買面條,而購(gòu)買面條的人下一次會(huì)有30%的人改買米飯.若用an,bn分別表示第n次購(gòu)買米飯、面條的人員比例,假設(shè)第一次購(gòu)買時(shí)比例恰好相等,即${a_1}={b_1}=\frac{1}{2}$
(1)求an+bn的值
(2)寫出數(shù)列{an}的遞推關(guān)系式
(3)求出數(shù)列{an}和{bn}的通項(xiàng)公式,并指出隨著時(shí)間推移(假定就餐人數(shù)為2000)食堂的主食應(yīng)該準(zhǔn)備米飯和面條各大約多少份,才能使廣大師生員工滿意.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,扇形OAB的半徑為1,圓心角為120°,四邊形PQRS是扇形的內(nèi)接矩形,當(dāng)其面積最大時(shí),求點(diǎn)P的位置,并求此最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案