(本小題滿分15分)求函數(shù)的最大和最小值.
函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140949212289.gif" style="vertical-align:middle;" />.因?yàn)?br />


當(dāng)時(shí)等號(hào)成立.故的最小值為.……………………………………………5分
又由柯西不等式得


所以.   ………………………………………………………………………………10分
由柯西不等式等號(hào)成立的條件,得,解得.故當(dāng)時(shí)等號(hào)成立.因此的最大值為.…………………………………………………………………………………15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)是定義在R上的非常值函數(shù),
且對(duì)任意的.
(1)證明:;
(2)設(shè),若在R上是單調(diào)增函數(shù),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)f(x)的定義域?yàn)镽,若|f(x)|≤|x|對(duì)任意的實(shí)數(shù)x均成立,則稱函數(shù)f(x)為函數(shù)。
(1)試判斷函數(shù)= =中哪些是函數(shù),并說明理由;
(2)求證:若a>1,則函數(shù)f(x)=ln(x2+a)-lna是函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知函數(shù)是其定義域內(nèi)的奇函數(shù),且
18
(1)求fx)的表達(dá)式;
(2)設(shè) (x > 0 )
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.
設(shè),常數(shù),定義運(yùn)算“”:,定義運(yùn)算“”: ;對(duì)于兩點(diǎn)、,定義.
(1)若,求動(dòng)點(diǎn)的軌跡;
(2)已知直線與(1)中軌跡交于兩點(diǎn),若,試求的值;
(3)在(2)中條件下,若直線不過原點(diǎn)且與軸交于點(diǎn)S,與軸交于點(diǎn)T,并且與(1)中軌跡交于不同兩點(diǎn)P、Q , 試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)。
(1)若函數(shù)上的增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;
(3)對(duì)于函數(shù)若存在區(qū)間,使時(shí),函數(shù)的值域也是,則稱上的閉函數(shù)。若函數(shù)是某區(qū)間上的閉函數(shù),試探求應(yīng)滿足的條件。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知上是的減函數(shù),則的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是偶函數(shù),而是奇函數(shù),且對(duì)任意,都有的大小關(guān)系是   (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),,則
A.B. 0C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案