7.已知圓錐的母線l=10,母線與旋轉(zhuǎn)軸的夾角α=30°,則圓錐的表面積為75π.

分析 先利用圓錐的軸截面的性質(zhì)求出底面的半徑r,進(jìn)而利用側(cè)面積的計(jì)算公式計(jì)算即可得出結(jié)論.

解答 解:如圖所示:
在Rt△POB中,r=sin30°×10=5,
∴該圓椎的側(cè)面積S=π×5×10=50π.
∴圓錐的表面積為50π+π•52=75π
故答案為:75π.

點(diǎn)評(píng) 熟練掌握?qǐng)A錐的軸截面的性質(zhì)和側(cè)面積的計(jì)算公式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=x2(0≤x≤3)的最大值、最小值分別是(  )
A.9和-1B.9和1C.9和0D.1和0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.點(diǎn)M (3,-2,1)關(guān)于平面yOz對(duì)稱的點(diǎn)的坐標(biāo)是( 。
A.(-3,-2,1 )B.(-3,2,-1)C.(-3,-2,-1)D.(-3,2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某中學(xué)的高一、高二、高三共有學(xué)生1350人,其中高一500人,高三比高二少50人,為了解該校學(xué)生健康狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有高一學(xué)生120人,則該樣本中的高二學(xué)生人數(shù)為( 。
A.80B.96C.108D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.復(fù)數(shù)i(2+i)的虛部為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a,b∈R,則“$\left\{\begin{array}{l}{a+b>2}\\{ab>1}\end{array}\right.$”是“a>1且b>1”的( 。
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知角A是△ABC的內(nèi)角,則“$cosA=\frac{1}{2}$”是“$sinA=\frac{{\sqrt{3}}}{2}$的充分不必要條件(填“充分非必要”、“必要非充分”、“充要條件”、“既非充分又非必要”之一).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若復(fù)數(shù)z為純虛數(shù),且滿足(2-i)z=a+i(i為虛數(shù)單位),則實(shí)數(shù)a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1經(jīng)過點(diǎn)(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若l過原點(diǎn),P為雙曲線上異于A,B的一點(diǎn),且直線PA、PB的斜率kPA,kPB均存在,求證:kPA•kPB為定值;
(3)若l過雙曲線的右焦點(diǎn)F1,是否存在x軸上的點(diǎn)M(m,0),使得直線l繞點(diǎn)F1無論怎樣轉(zhuǎn)動(dòng),都有$\overrightarrow{MA}$•$\overrightarrow{MB}$=0成立?若存在,求出M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案