已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動(dòng)點(diǎn)E在直線l上,過點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.
(ⅰ)求證:直線AB恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說明理由.
【答案】分析:(Ⅰ)由題設(shè)知曲線C的方程x2=4y.
(Ⅱ)(。┰O(shè)E(a,-2),,由題設(shè)知x12-2ax1-8=0.同理可得:x22-2ax2-8=0所以x1+x2=2a,x1•x2=-8,可得AB中點(diǎn)為,由此可知直線AB恒過一定點(diǎn),并能求出該定點(diǎn)的坐標(biāo).
(ⅱ)由(。┲狝B中點(diǎn),直線AB的方程為,當(dāng)a≠0時(shí),AB的中垂線與直線y=-2的交點(diǎn).若△ABM為等邊三角形,則,∴,解得a=±2,此時(shí)E(±2,-2),故滿足條件的點(diǎn)E存在,坐標(biāo)為E(±2,-2).
解答:解:(Ⅰ)曲線C的方程x2=4y(5分)
(Ⅱ)(。┰O(shè)E(a,-2),
過點(diǎn)A的拋物線切線方程為,
∵切線過E點(diǎn),∴,整理得:x12-2ax1-8=0
同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1•x2=-8可得AB中點(diǎn)為
,
∴直線AB的方程為,∴AB過定點(diǎn)(0,2)(10分)

(ⅱ)由(ⅰ)知AB中點(diǎn),直線AB的方程為
當(dāng)a≠0時(shí),則AB的中垂線方程為,
∴AB的中垂線與直線y=-2的交點(diǎn)

若△ABM為等邊三角形,則,

解得a2=4,∴a=±2,此時(shí)E(±2,-2),
當(dāng)a=0時(shí),經(jīng)檢驗(yàn)不存在滿足條件的點(diǎn)E
綜上可得:滿足條件的點(diǎn)E存在,坐標(biāo)為E(±2,-2).(15分)
點(diǎn)評(píng):本題考查直線和圓錐曲線的綜合問題,解題時(shí)要注意公式的靈活運(yùn)用,注意計(jì)算能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動(dòng)點(diǎn)E在直線l上,過點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.
(。┣笞C:直線AB恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線y=-2的距離小1.
(1)求曲線C的方程;
(2)過點(diǎn)F作直線l與曲線C交于A、B兩點(diǎn).
(。┻^A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M,證明:MA⊥MB;
(ⅱ)是否在y軸上存在定點(diǎn)Q,使得無論AB怎樣運(yùn)動(dòng),都有∠AQF=∠BQF?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動(dòng)點(diǎn)E在直線l上,過點(diǎn)E分別作曲線C的切線EA、EB,切點(diǎn)為A、B.直線AB是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動(dòng)點(diǎn)P到點(diǎn)F(2,0)的距離比它到直線x=-1的距離大1.
(I)求曲線C的方程;
(II)過點(diǎn)F(2,0)且傾斜角為α(0<α<
π2
)
的直線與曲線C交于A,B兩點(diǎn),線段AB的垂直平分線m交x軸于點(diǎn)P,證明:|FP|-|FP|•cos2α為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
2

(1)求曲線C的方程.
(2)過點(diǎn)M(1,2)的直線l與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案