已知數(shù)列{}滿足+=2n+1 (
(1)求出,的值;
(2)由(1)猜想出數(shù)列{}的通項公式,并用數(shù)學歸納法證明.

(1),,;(2)

解析試題分析:解“歸納-猜想-證明”題的關鍵環(huán)節(jié)一般有三步,首先準確計算出前若干項,這是歸納,猜想的基礎.而后通過觀察,分析,比較,聯(lián)想,猜想出一般結論.最后用數(shù)學歸納法證明.(1)由+=2n+1,逐一求出各項;(2)由前三項猜想出通項公式,用數(shù)學歸納法證明過程中,當時,所得式子為,將時代入可證.
解:(1)所以, 又,同理
(2) 猜測,
(數(shù)學歸納法)①由(1)當n=1時,命題成立;
②假設時, 成立,
時, 由已知

代入化簡,
,
時,命題成立,
由①-②得
考點:數(shù)列的通項公式,數(shù)學歸納法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

數(shù)列{}的通項公式為=2n-9,n∈N﹡,當前n項和達到最小時,n等于_________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,),,)是函數(shù)的圖象上的任意兩點.
(1)當時,求+的值;
(2)設,其中,求
(3)對應(2)中,已知,其中,設為數(shù)列的前項和,求證.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的通項公式為an=n2-n-30.
(1)求數(shù)列的前三項,60是此數(shù)列的第幾項?
(2)n為何值時,an=0,an>0,an<0?
(3)該數(shù)列前n項和Sn是否存在最值?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分18分)本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知數(shù)列滿足.
(1)若,求的取值范圍;
(2)若是等比數(shù)列,且,正整數(shù)的最小值,以及取最小值時相應的僅比;
(3)若成等差數(shù)列,求數(shù)列的公差的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和。
(1)求數(shù)列的通項公式;
(2)求的最大或最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足:其中,數(shù)列滿足:
(1)求;
(2)求數(shù)列的通項公式;
(3)是否存在正數(shù)k,使得數(shù)列的每一項均為整數(shù),如果不存在,說明理由,如果存在,求出所有的k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列,,且滿足
(1)求證數(shù)列是等差數(shù)列;
(2)設,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

[2014·河北教學質量監(jiān)測]已知數(shù)列{an}滿足:a1=1,an+1 (n∈N*).若bn+1=(n-λ)(+1)(n∈N*),b1=-λ,且數(shù)列{bn}是單調遞增數(shù)列,則實數(shù)λ的取值范圍為(  )

A.λ>2 B.λ>3 C.λ<2 D.λ<3

查看答案和解析>>

同步練習冊答案