19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{x-{x}^{2},x<0}\end{array}\right.$,若f(a)>f(2-a),則a的取值范圍是a>1.

分析 函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{x-{x}^{2},x<0}\end{array}\right.$在R上單調(diào)遞增,利用f(a)>f(2-a),可得a>2-a,即可求出a的取值范圍.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{x-{x}^{2},x<0}\end{array}\right.$在R上單調(diào)遞增,
∵f(a)>f(2-a),
∴a>2-a,
∴a>1,
故答案為a>1

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性,考查學(xué)生解不等式的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,如圖,在四棱錐S-ABCD中,底面梯形ABCD中,BC∥AD,平面SAB⊥平面ABCD,△SAB是等邊三角形,已知$AC=2AB=4,BC=2AD=2DC=2\sqrt{5}$.
(I)求證:平面SAB⊥平面SAC;
(II)求二面角B-SC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心在l上,若圓C上存在唯一一點(diǎn)M,使|MA|=2|MO|,則圓心C的非零橫坐標(biāo)是$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=6,S6=3,則S10=( 。
A.$\frac{1}{10}$B.0C.-10D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以(-1,1)為圓心且與直線x-y=0相切的圓的方程是( 。
A.(x+1)2+(y-1)2=2B.(x+1)2+(y-1)2=4C.(x-1)2+(y+1)2=1D.(x-1)2+(y+1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.“累積凈化量(CCM)”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示.根據(jù)GB/T18801-2015《空氣凈化器》國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累積凈化量(CCM)有如下等級(jí)劃分:
 累積凈化量(克) (3,5] (5,8] (8,12] 12以上
 等級(jí) P1 P2 P3 P4
為了了解一批空氣凈化器(共2000臺(tái))的質(zhì)量,隨機(jī)抽取n臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這n臺(tái)機(jī)器的
累積凈化量都分布在區(qū)間(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均勻分組,其中累積凈化量在(4,6]的所有數(shù)據(jù)有:4.5,4.6,5.2,5.7和5.9,并繪制了如下頻率分布直方圖.
(Ⅰ)求n的值及頻率分布直方圖中的x值;
(Ⅱ)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級(jí)為P2的空氣凈化器有多少臺(tái)?
(Ⅲ)從累積凈化量在(4,6]的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為P2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$y=\frac{x^3}{{\root{3}{{{x^4}-1}}}}$的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為e=$\frac{{\sqrt{2}}}{2}$,點(diǎn)P(1,$\frac{{\sqrt{2}}}{2}$)在該橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l與圓O:x2+y2=1相切,并橢圓交于不同的兩點(diǎn)A、B,求△AOB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若數(shù)據(jù)a1,a2,a3,a5,a6這6個(gè)數(shù)據(jù)的平均數(shù)為$\overline{x}$,方差為0.20,則數(shù)據(jù)a1,a2,a3,a5,a6,$\overline{x}$這7個(gè)數(shù)據(jù)的方差是$\frac{6}{35}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案