【題目】在四棱錐中,底面是平行四邊形,,側面底面,,, 分別為的中點,點在線段上.
(Ⅰ)求證:直線平面;
(Ⅱ)若為的中點,求平面與平面所成銳二面角的余弦值;
(Ⅲ)設,當為何值時,直線與平面所成角的正弦值為,求的值.
【答案】(Ⅰ)見證明;(Ⅱ) (Ⅲ)
【解析】
(Ⅰ)因為,,所以,即。又由題意可知底面,所以,由線面垂直的判定定理即可得證。
(Ⅱ)分別以為軸、軸和軸正方向建系,利用向量法能求出平面與平面所成銳二面角的余弦值。
(Ⅲ)由結合(2),可得,,又平面 ,根據線面角的余弦值即可求解。
(Ⅰ)證明:在平行四邊形中,因為,,所以.
所以.
因為側面底面,且,面面
且面所以底面.
又因為底面,所以.
又因為,平面,平面,
所以平面
(Ⅱ)解:因為底面,,所以兩兩垂直,故以分別為軸、軸和軸,建立空間直角坐標系,
則,
設平面的法向量為,
由,,得
令,得.
為的中點,由(1)知,平面且,
所以 ,
平面與平面所成銳二面角的余弦值;
(Ⅲ)設,則,所以,
由(1)知.直線與平面所成的角正弦值為
所以,即,
解得.或 (舍)
科目:高中數學 來源: 題型:
【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數量單位:萬只與相應年份序號的數據表和散點圖如圖所示,根據散點圖,發(fā)現(xiàn)y與x有較強的線性相關關系,李四提供了該縣山羊養(yǎng)殖場的個數單位:個關于x的回歸方程.
年份序號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養(yǎng)殖山羊萬只 |
根據表中的數據和所給統(tǒng)計量,求y關于x的線性回歸方程參考統(tǒng)計量:,;
試估計:該縣第一年養(yǎng)殖山羊多少萬只
到第幾年,該縣山羊養(yǎng)殖的數量與第一年相比縮小了?
附:對于一組數據,,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓:的上頂點為,左、右焦點分別為,,直線的斜率為,點,在橢圓上,其中是橢圓上一動點,點坐標為.
(1)求橢圓的標準方程;
(2)作直線與軸垂直,交橢圓于,兩點(,兩點均不與點重合),直線,與軸分別交于點,,試求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品廠為了檢查甲乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本稱出它們的質量(單位:克),質量值落在(495,510]的產品為合格品,否則為不合格品.表是甲流水線樣本頻數分布表,圖是乙流水線樣本頻率分布直方圖.
表甲流水線樣本頻數分布表
產品質量/克 | 頻數 |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
(1)若以頻率作為概率,試估計從兩條流水線分別任取1件產品,該產品恰好是合格品的概率分別是多少;
(2)由以上統(tǒng)計數據作出2×2列聯(lián)表,并回答能否有95%的把握認為“產品的包裝質量與兩條自動包裝流水線的選擇有關”
χ2
甲流水線 | 乙流水線 | 總計 | |
合格品 | |||
不合格品 | |||
總計 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】5名運動員參加一次乒乓球比賽,每名運動員都賽場并決出勝負.設第位運動員共勝場,負場(),則錯誤的結論是( )
A.
B.
C. 為定值,與各場比賽的結果無關
D. 為定值,與各場比賽結果無關
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別為的三內角A,B,C的對邊,其面積,在等差數列中,,公差.數列的前n項和為,且.
(1)求數列的通項公式;
(2)若,求數列的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:①若線性回歸方程為,則當變量增加一個單位時,一定增加3個單位;②將一組數據中的每個數據都加上同一個常數后,方差不會改變;③線性回歸直線方程必過點;④抽簽法屬于簡單隨機抽樣;其中錯誤的說法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯(lián)考,現(xiàn)從這兩校參加考試的學生數學成績在100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如下的莖葉圖.
(1)試通過莖葉圖比較這40份試卷的兩校學生數學成績的中位數;
(2)若把數學成績不低于135分的記作數學成績優(yōu)秀,根據莖葉圖中的數據,判斷是否有90的把握認為數學成績在100分及以上的學生中數學成績是否優(yōu)秀與所在學校有關;
(3)若從這40名學生中選取數學成績在的學生,用分層抽樣的方式從甲乙兩校中抽取5人,再從這5人中隨機抽取3人分析其失分原因,求這3人中恰有2人是乙校學生的概率.
參考公式與臨界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com