某科研所計(jì)劃利用宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品甲、乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件)產(chǎn)品B(件)
研制成本、搭載費(fèi)用之和(萬(wàn)元)2030計(jì)劃最大資金額300萬(wàn)元
產(chǎn)品重量(千克)105最大搭載重量110千克
預(yù)計(jì)收益(萬(wàn)元)12090
試問(wèn):如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?
考點(diǎn):簡(jiǎn)單線性規(guī)劃的應(yīng)用
專(zhuān)題:計(jì)算題,應(yīng)用題,不等式的解法及應(yīng)用
分析:由題意,設(shè)搭載甲產(chǎn)品x件,乙產(chǎn)品y件,總預(yù)計(jì)收益為z萬(wàn)元,化為簡(jiǎn)單線性規(guī)劃應(yīng)用.
解答: 解:設(shè)搭載甲產(chǎn)品x件,乙產(chǎn)品y件,總預(yù)計(jì)收益為z萬(wàn)元,
則總預(yù)計(jì)收益z=120x+90y,
20x+30y≤300
10x+5y≤110
x、y∈N
,
作出平面區(qū)域如圖,
作出直線l0:4x+3y=0并平移,由圖象得,
當(dāng)直線經(jīng)過(guò)點(diǎn)M時(shí)z取得最大值,
2x+3y=30
2x+y=22
解得,
x=9,y=4;
即搭載甲產(chǎn)品9件,乙產(chǎn)品4件,總預(yù)計(jì)收益最大,
為120×9+90×4=1440萬(wàn)元.
點(diǎn)評(píng):本題考查了實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力及簡(jiǎn)單線性規(guī)劃,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積等于( 。
A、12πcm2
B、15πcm2
C、24πcm2
D、30πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=kx在定義域內(nèi)是減函數(shù),則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2+x-2≤0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x5+x3+x+8,若f(a)=2,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E的方程:
x2
a2
+
y2
b2
=1(a>b>0),它的兩個(gè)焦點(diǎn)為F1(-5
3
,0),F2(5
3
,0)
,P為橢圓的一點(diǎn)(點(diǎn)P在第三象限上),且△PF1F2的周長(zhǎng)為20+10
3
,
(Ⅰ)求橢圓E的方程;
(Ⅱ)求出橢圓的左頂點(diǎn)M的坐標(biāo),MP交圓P與另一點(diǎn)N的坐標(biāo),若點(diǎn)A在橢圓E上,使得
AM
AN
=-32,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程2ax2-x-2=0在(0,1)內(nèi)恰有一個(gè)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(4-a)x與g(x)=logax的增減性相同,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2
1+x
a-x
的圖象關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案