不等式x2+x-2≤0的解集是
 
考點(diǎn):一元二次不等式的解法
專(zhuān)題:不等式的解法及應(yīng)用
分析:把不等式x2+x-2≤0化為(x-1)(x+2)≤0,求出x的取值范圍,寫(xiě)出不等式的解集.
解答: 解:不等式x2+x-2≤0可化為
(x-1)(x+2)≤0,
解得-2≤x≤1;
∴原不等式的解集是{x|-2≤x≤1}.
故答案為:{x|-2≤x≤1}.
點(diǎn)評(píng):本題考查了一元二次不等式的解法與應(yīng)用問(wèn)題,解題時(shí)應(yīng)按照解一元二次不等式的基本步驟進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交雙曲線于A,B兩點(diǎn),若AB的中點(diǎn)坐標(biāo)為N(-12,-15),則E的方程為(  )
A、
x2
3
+
y2
6
=1
B、
x2
6
-
y2
3
=1
C、
x2
4
-
y2
5
=1
D、
x2
5
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車(chē)間分批生產(chǎn)某種產(chǎn)品,每批的生產(chǎn)準(zhǔn)備費(fèi)用為40000元.若每批生產(chǎn)x件,則平均倉(cāng)儲(chǔ)時(shí)間為
x
4
天,且每件產(chǎn)品每天的倉(cāng)儲(chǔ)費(fèi)用為1元.為使平均每件產(chǎn)品的生產(chǎn)準(zhǔn)備費(fèi)用與倉(cāng)儲(chǔ)費(fèi)用之和最小,每批應(yīng)生產(chǎn)產(chǎn)品的件數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(1,1),B(2,-1)位于直線x+y-a=0的兩側(cè),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)在定義域R上的導(dǎo)函數(shù)是f'(x),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f'(x)<0,設(shè)a=f(0)、b=f(
2
)、c=f(log28),則( 。
A、a<b<c
B、a>b>c
C、a<c<b
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x+
a
|x|

(1)當(dāng)x>0時(shí),若f(x)的最小值為2,求正數(shù)a的值;
(2)當(dāng)a=1時(shí),作出函數(shù)y=f(x)的圖象并寫(xiě)出它的單調(diào)增區(qū)間(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某科研所計(jì)劃利用宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品甲、乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件)產(chǎn)品B(件)
研制成本、搭載費(fèi)用之和(萬(wàn)元)2030計(jì)劃最大資金額300萬(wàn)元
產(chǎn)品重量(千克)105最大搭載重量110千克
預(yù)計(jì)收益(萬(wàn)元)12090
試問(wèn):如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a<0,-1<b<0,那么(  )
A、a>ab>ab2
B、ab2>ab>a
C、ab>a>ab2
D、ab>ab2>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-x2+2x-1在[0,3]上最小值為( 。
A、0B、-4
C、-1D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案