如圖,在幾何體中,四邊形為平行四邊形,且面,,且,中點.

(Ⅰ)證明:平面

(Ⅱ)求直線與平面所成角的正弦值.

 

 

 

【答案】

解:(Ⅰ)證明:因為,且OAC的中點,所以. 

又由題意可知,平面平面,交線為,且平面,    

    所以平面.                           ……..(5分)                   

(Ⅱ)如圖,以O為原點,所在直線分別為xy,z軸建立空間直角坐標(biāo)系.

 

 

由題意可知,

所以得:

則有:

設(shè)平面的一個法向量為,則有

,令,得

  所以.       

      .          

因為直線與平面所成角和向量所成銳角互余,

所以.                          ….. …….. …....(10分)                     

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且(單位:cm),E為PA的中點.
(1)如圖,若主視方向與AD平行,請作出該幾何體的主視圖并求出主視圖面積;
(2)證明:DE∥平面PBC;
(3)證明:DE⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=
12
AB,點E、M分別為A1B、C1C的中點,過點A1、B、M三點的平面A1BMN交C1D1于點N.
(1)求證:EM∥平面A1B1C1D1;
(2)求二面角B-A1N-B1的正切值;
(3)設(shè)截面A1BMN把該正四棱柱截成的兩個幾何體的體積分別為V1、V2(V1<V2),求V1:V2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃岡模擬)如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F分別為PA、PD的中點.在此幾何體中,給出下面四個結(jié)論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的命題的個數(shù)是
2
2
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E為PA的中點.
(1)如圖,若正視方向與AD平行,請在下面(答題區(qū))方框內(nèi)作出該幾何體的正視圖并求出正視圖面積;
(2)證明:DE∥平面PBC;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=4,DC=3,E是PC的中點.
(I)證明:PA∥平面BDE;
(II)求△PAD以PA為軸旋轉(zhuǎn)所圍成的幾何體體積.

查看答案和解析>>

同步練習(xí)冊答案