6.下邊是高中數(shù)學(xué)常用邏輯用語(yǔ)的知識(shí)結(jié)構(gòu)圖,則(1)、(2)處依次為( 。
A.命題及其關(guān)系、或B.命題的否定、或C.命題及其關(guān)系、并D.命題的否定、并

分析 命題的否定在全稱(chēng)量詞與存在量詞這一節(jié)中,簡(jiǎn)單的邏輯聯(lián)結(jié)詞包括或、且、非,可得結(jié)論.

解答 解:命題的否定在全稱(chēng)量詞與存在量詞這一節(jié)中,簡(jiǎn)單的邏輯聯(lián)結(jié)詞包括或、且、非,
故選A.

點(diǎn)評(píng) 本題考查知識(shí)結(jié)構(gòu)圖,知識(shí)結(jié)構(gòu)圖比較直觀地描述了知識(shí)之間的關(guān)聯(lián),解題的關(guān)鍵是理解知識(shí)結(jié)構(gòu)圖的作用及知識(shí)之間的上下位關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知某學(xué)校有1680名學(xué)生,現(xiàn)在采用系統(tǒng)抽樣的方法抽取84人,調(diào)查他們對(duì)學(xué)校食堂的滿(mǎn)意程度,將1680人,按1,2,3,…,1680隨機(jī)編號(hào),則在抽取的84人中,編號(hào)落在[61,160]內(nèi)的人數(shù)為( 。
A.7B.5C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.過(guò)動(dòng)點(diǎn)M作圓:(x-2)2+(y-2)2=1的切線(xiàn)MN,其中N為切點(diǎn),若|MN|=|MO|(O為坐標(biāo)原點(diǎn)),則|MN|的最小值是$\frac{{7\sqrt{2}}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(0<ω<1)的圖象關(guān)于點(diǎn)(-2,0)對(duì)稱(chēng),則ω=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=log2(x+a)與g(x)=x2-(a+1)x-4(a+5)存在相同的零點(diǎn),則a的值為( 。
A.4或-$\frac{5}{2}$B.4或-2C.5或-2D.6或-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知定義在R上的函數(shù)f(x)滿(mǎn)足f(x)=(x+2),且當(dāng)-l≤x≤1時(shí),f(x)=2|x|,函數(shù)g(x)=x+$\sqrt{2}$,實(shí)數(shù)a,b滿(mǎn)足b>a>3.若?x1∈[a,b],?x2∈[-$\sqrt{2}$,0],使得f(x1)=g(x2)成立,則b-a的最大值為( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知P,A,B,C是球O球面上的四點(diǎn),△ABC是正三角形,三棱錐P-ABC的體積為$\frac{9\sqrt{3}}{4}$,且∠APO=∠BPO=∠CPO=30°,則球O的表面積為( 。
A.B.$\frac{32}{3}$πC.16πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)P(a,b)及圓O:x2+y2=r2,則“點(diǎn)P在圓O內(nèi)”是“直線(xiàn)l:ax+by=r2與圓O相離”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x)=2x2-4x-1,設(shè)有n個(gè)不同的數(shù)xi(i=1,2,…,n)滿(mǎn)足0≤x1<x2<…<xn≤3,則滿(mǎn)足|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xn-1)-f(xn)|≤M的M的最小值是( 。
A.10B.8C.6D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案