A. | 10 | B. | 8 | C. | 6 | D. | 2 |
分析 由f(x)=2x2-4x-1=2(x-1)2-3對任意xi,xj(i,j=1,2,3,…,n),0≤x1<x2<…<xn≤3,都有|f(xi)-f(xj)|≤f(x)max-f(x)min=8,即可得出結(jié)論.
解答 解:∵f(x)=2x2-4x-1=2(x-1)2-3對任意xi,xj(i,j=1,2,3,…,n),0≤x1<x2<…<xn≤3,
都有|f(xi)-f(xj)|≤f(x)max-f(x)min=8,
∵|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xn-1)-f(xn)|≤M,
∴|f(x1)-f(xn)|≤M,
∴M≥8,
∴M的最小值是8,
故選B.
點評 本題考查了函數(shù)的單調(diào)性、函數(shù)求最值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題及其關(guān)系、或 | B. | 命題的否定、或 | C. | 命題及其關(guān)系、并 | D. | 命題的否定、并 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1+x2=2 | B. | e2<x3x4<(2e-1)2 | C. | 0<(2e-x3)(2e-x4)<1 | D. | 1<x1x2<e2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0} | B. | {-3,-4} | C. | {-1,-2} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com