【題目】定義,已知函數(shù)定義域都是,給出下列命題:

1)若、都是奇函數(shù),則函數(shù)為奇函數(shù);

2)若、都是減函數(shù),則函數(shù)為減函數(shù);

3)若,,則;

4)若、都是周期函數(shù),則函數(shù)是周期函數(shù).

其中正確命題的個數(shù)為(

A.1B.2C.3D.4

【答案】B

【解析】

(1)(4)舉出反例即可.(2)(3),根據(jù)單調性與最值的方法推理即可.

(1),,,,為偶函數(shù),(1)錯誤

(2),因為函數(shù)定義域都是、都是減函數(shù),且函數(shù)的值為、中的較小者,為減函數(shù),故(2)正確.

(3),因為,,則,,

,所以.(3)正確.

(4),的最小正周期是無理數(shù),的最小正周期是有理數(shù),則不存在使得同時是最小正周期的整數(shù)倍.所以此時不是周期函數(shù).(4)錯誤.

(2)(3)正確.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】是定義在區(qū)間上且同時滿足如下條件的函數(shù)所組成的集合:

①對任意的,都有

②存在常數(shù),使得對任意的,都有

1)設,試判斷是否屬于集合

2)若,如果存在,使得,求證:滿足條件的是唯一的;

3)設,且,試求參數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖一,在直角梯形中,分別為的三等分點,, ,,若沿著折疊使得點重合,如圖二所示,連結.

1)求證:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若內單調遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設計一個隨機試驗,使一個事件的概率與某個未知數(shù)有關,然后通過重復試驗,以頻率估計概率,即可求得未知數(shù)的近似解,這種隨機試驗在數(shù)學上稱為隨機模擬法,也稱為蒙特卡洛法。比如要計算一個正方形內部不規(guī)則圖形的面積,就可以利用撒豆子,計算出落在不規(guī)則圖形內部和正方形內部的豆子數(shù)比近似等于不規(guī)則圖形面積與正方形面積比,從而近似求出不規(guī)則圖形的面積.

統(tǒng)計學上還有一個非常著名的蒲豐投針實驗:平面上間隔的平行線,向平行線間的平面上任意投擲一枚長為的針,通過多次實驗可以近似求出針與任一平行線(以為例)相交(當針的中點在平行線外不算相交)的概率.以表示針的中點與最近一條平行線的距離,又以表示所成夾角,如圖甲,易知滿足條件:,

由這兩式可以確定平面上的一個矩形,如圖乙,在圖甲中,當滿足___________,之間的關系)時,針與平行線相交(記為事件).可用從實驗中獲得的頻率去近似,即投針次,其中相交的次數(shù)為,則,歷史上有一個數(shù)學家親自做了這實驗,他投擲的次數(shù)是5000,相交的次數(shù)為2550次,,,依據(jù)這個實驗求圓周率的近似值_________.(精確到3位小數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)設的極值點.求,并求的單調區(qū)間;

2)證明:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知極點為直角坐標系的原點,極軸為軸正半軸且單位長度相同的極坐標系中曲線,為參數(shù)).

(Ⅰ)求曲線上的點到曲線距離的最小值;

(Ⅱ)若把上各點的橫坐標都擴大原來為原來的2倍,縱坐標擴大原來的倍,得到曲線,設,曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)證明:;

2)設上的極值點從小到大排列為,求證:時,

查看答案和解析>>

同步練習冊答案