【題目】如圖,在四棱錐中,側(cè)棱底面,底面是直角梯形,,,且,,是棱的中點(diǎn) .

(Ⅰ)求證:∥平面

(Ⅱ)求平面與平面所成銳二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)是線段上的動點(diǎn),與平面所成的角為,求的最大值.

【答案】(1)見解析 ; (2) ;(3).

【解析】

(Ⅰ)通過建立空間直角坐標(biāo)系,利用平面SCD的法向量即可證明AM∥平面SCD;
(Ⅱ)分別求出平面SCD與平面SAB的法向量,利用法向量的夾角即可得出;
(Ⅲ)利用線面角的夾角公式即可得出表達(dá)式,進(jìn)而利用二次函數(shù)的單調(diào)性即可得出.

(Ⅰ)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,

,

設(shè)平面的一個法向量為

,令,得 ,∴ ,即

平面∥平面

(Ⅱ)取平面SAB的一個法向量 ,則

∴平面與平面所成的銳二面角的余弦值為

(Ⅲ)設(shè),則,平面的一個法向量為

當(dāng),即時,取得最大值,且

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①某學(xué)校高二年級共有526人,為了調(diào)查學(xué)生每天用于休息的時間,決定抽取10%的學(xué)生進(jìn)行調(diào)查;②運(yùn)動會的工作人員為參加接力賽的6支隊(duì)伍安排跑道;③一次數(shù)學(xué)月考中,某班有10人的成績在100分以上,32人的成績在90100分,12人的成績低于90分,現(xiàn)從中抽取9人有解有關(guān)情況.針對這三個事件,恰當(dāng)?shù)某闃臃椒ǚ謩e為(

A.分層抽樣、分層抽樣、簡單隨機(jī)抽樣B.系統(tǒng)抽樣、簡單隨機(jī)抽樣、分層抽樣

C.簡單隨機(jī)抽樣、簡單隨機(jī)抽樣、分層抽樣D.系統(tǒng)抽樣、分層抽樣、簡單隨機(jī)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有,,,四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎.在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎情況預(yù)測如下:

甲說:“、同時獲獎”;

乙說:“、不可能同時獲獎”;

丙說:“獲獎”;

丁說:“、至少一件獲獎”.

如果以上四位同學(xué)中有且只有二位同學(xué)的預(yù)測是正確的,則獲獎的作品是( )

A. 作品與作品 B. 作品與作品 C. 作品與作品 D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“節(jié)能減排,綠色生態(tài)”為當(dāng)今世界各國所倡導(dǎo),某公司在科研部門的鼎力支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該公 司每月的處理量(噸)至少為50噸,至多為220噸.月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系式近似表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為120元.

(1)該公司每月處理量為多少噸時,才能使每噸的平均處理成本最低?

(2)每月處理量為多少噸時,月獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

(1)討論函數(shù)的單凋性;

(2)若存在使得對任意的不等式(其中e為自然對數(shù)的底數(shù))都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,且,

1)求證:

2)在線段上,是否存在一點(diǎn),使得二面角的大小為45°,如果存在,求與平面所成角的正弦值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面 ,且

1證明:平面平面

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

同步練習(xí)冊答案