9.已知變量x和y滿足關(guān)系$\widehat{y}$=0.7x+0.35,變量y與z負相關(guān),下列結(jié)論中正確的是( 。
A.x與y正相關(guān),x與z負相關(guān)B.x與y正相關(guān),x與z正相關(guān)
C.x與y負相關(guān),x與z負相關(guān)D.x與y負相關(guān),x與z正相關(guān)

分析 根據(jù)y=0.1x-10,得出x和y正相關(guān),由z與y負相關(guān),得出x與z負相關(guān).

解答 解:∵變量x和y滿足關(guān)系$\widehat{y}$=0.7x+0.35,
∴變量x和y是正相關(guān)關(guān)系;
又變量z與y負相關(guān),
∴變量x與z負相關(guān).
故選:A.

點評 本題考查了兩個變量線性相關(guān)關(guān)系的判斷問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,a,b,c分別為角A,B,C所對的邊,若b=$\sqrt{2}$,a=2,B=$\frac{π}{4}$,則c=( 。
A.$\frac{1}{2}$B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知tan(α+β)=$\frac{2}{5}$,tan($β+\frac{π}{4}$)=$\frac{1}{4}$,則tan($α-\frac{π}{4}$)的值為( 。
A.$\frac{1}{6}$B.$\frac{22}{13}$C.$\frac{3}{22}$D.$\frac{13}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,B=45°,C=60°,c=2,則b=( 。
A.$\frac{{2\sqrt{6}}}{3}$B.$\frac{{3\sqrt{6}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=x(x-c)2在x=1處有極小值,則實數(shù)c為( 。
A.3B.1C.1或3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實數(shù)a,b,c滿足對任意實數(shù)x,y有3x+4y-5≤ax+by+c≤3x+4y+5,則(  )
A.a+b-c的最小值為2B.a-b+c的最小值為-4
C.a+b-c的最大值為4D.a-b+c的最大值為6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在測試中,客觀題難度的計算公式為${P_i}=\frac{R_i}{N}$,其中Pi為第i題的難度,Ri為答對該題的人數(shù),N為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級240名學(xué)生進行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如表所示:
題號12345
考前預(yù)估難度Pi0.90.80.70.60.4
測試后,隨機抽取了20名學(xué)生的答題數(shù)據(jù)進行統(tǒng)計,結(jié)果如下:
題號12345
實測答對人數(shù)161614144
(Ⅰ)根據(jù)題中數(shù)據(jù),估計這240名學(xué)生中第5題的實測答對人數(shù);
(Ⅱ)從抽樣的20名學(xué)生中隨機抽取2名學(xué)生,記這2名學(xué)生中第5題答對的人數(shù)為X,求X的分布列和數(shù)學(xué)期望;
(Ⅲ)試題的預(yù)估難度和實測難度之間會有偏差.設(shè)${P_i}^′$為第i題的實測難度,請用Pi和${P_i}^′$設(shè)計一個統(tǒng)計量,并制定一個標(biāo)準(zhǔn)來判斷本次測試對難度的預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,關(guān)于x的方程(1+x2)sinA+2xsinB+(1-x2)sinC=0無實數(shù)根,則△ABC的形狀為( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC中,∠A=30°,2AB,BC分別是$2\sqrt{3}+\sqrt{11}$、$2\sqrt{3}-\sqrt{11}$的等差中項與等比中項,則△ABC的面積等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步練習(xí)冊答案