A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{2}$或$\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{3}}}{4}$ |
分析 由等差中項與等比中項的定義求出AB=$\sqrt{3}$,BC=1,由余弦定理得AC=1或AC=2,由此能求出△ABC的面積.
解答 解:△ABC中,∠A=30°,2AB,BC分別是$2\sqrt{3}+\sqrt{11}$、$2\sqrt{3}-\sqrt{11}$的等差中項與等比中項,
∴$\left\{\begin{array}{l}{2AB=\frac{2\sqrt{3}+\sqrt{11}+2\sqrt{3}-\sqrt{11}}{2}}\\{B{C}^{2}=(2\sqrt{3}+\sqrt{11})(2\sqrt{3}-\sqrt{11})}\end{array}\right.$,
解得AB=$\sqrt{3}$,BC=1,
∴由余弦定理得:${1}^{2}=(\sqrt{3})^{2}+A{C}^{2}-2\sqrt{3}×AC×cos30°$,
解得AC=1或AC=2,
當AC=1時,△ABC的面積S=$\frac{1}{2}AC•AB•sin30°$=$\frac{1}{2}×1×\sqrt{3}×\frac{1}{2}$=$\frac{\sqrt{3}}{4}$.
當AC=2時,△ABC的面積S=$\frac{1}{2}AC•AB•sin30°$=$\frac{1}{2}×2×\sqrt{3}×\frac{1}{2}$=$\frac{\sqrt{3}}{2}$.
故選:D.
點評 本題考查三角形面積的求法,是基礎題,解題時要認真審題,注意等比中項、等差中項、余弦定理的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x與y正相關,x與z負相關 | B. | x與y正相關,x與z正相關 | ||
C. | x與y負相關,x與z負相關 | D. | x與y負相關,x與z正相關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2015 | B. | 2016 | C. | 2017 | D. | 2018 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{15}{16}$ | B. | $\frac{31}{16}$ | C. | $\frac{31}{32}$ | D. | $\frac{63}{32}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2} | B. | {-1,1,2} | C. | {-1,0,2} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 必要非充分條件 | ||
C. | 充分非必要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com