4.已知3x=2,3y=4,3z=8,則x,y,z為( 。
A.等差數(shù)列B.等比數(shù)列
C.既是等差,又是等比數(shù)列D.都不是

分析 由指數(shù)式和對(duì)數(shù)式的互化公式,分別求出x,y,z,從而得到x+z=2y,由此能求出結(jié)果.

解答 解:∵3x=2,3y=4,3z=8,
∴x=log32,y=log34=2log32,z=log38=3log32,
∴x+z=2y,
∴x,y,z為等差數(shù)列.
故選:A.

點(diǎn)評(píng) 本題考查等差數(shù)列、等比數(shù)列的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)式和對(duì)數(shù)式的互化公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,以F2為圓心與雙曲線的漸近線相切,若圓F2和雙曲線的一個(gè)交點(diǎn)為M,滿足MF1⊥MF2,則雙曲線的離心率是$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若復(fù)數(shù)z滿足z2=$\frac{3}{4}$-i(i為虛數(shù)單位),則z的模為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在矩形ABCD中,AB=2AD,E是CD的中點(diǎn),以AE為折痕將△ADE向上折起,使D到P點(diǎn)位置,且PC=PB.
(1)若F是BP的中點(diǎn),求證:CF∥平面APE;
(2)求證:平面APE⊥平面ABCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點(diǎn)分別為F1、F2,焦距為6,過右焦點(diǎn)F2向其中一條漸近線作垂線F2H,交漸近線于H點(diǎn),當(dāng)△F1F2H的周長取最大值時(shí),雙曲線的離心率e=( 。
A.$\sqrt{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列函數(shù)的定義域和值域.
(1)y=2arccos(x-1);
(2)y=2arccos($\frac{1}{2}$-x);
(3)y=arccos$\frac{1}{\sqrt{x}}$;
(4)y=$\sqrt{\frac{π}{3}-arccos(4-x)}$;
(5)y=arccos(x2-x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.經(jīng)過兩點(diǎn)A(-m,6)、B(1,3m)的直線的斜率是6,則m的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若程序框圖如圖所示,則該程序運(yùn)行后輸出的值是10000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=-$\frac{1}{2}{x^2}$+(a+1)x+(1-a)lnx,a∈R.
(Ⅰ)當(dāng)a=3時(shí),求曲線C:y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)x∈[1,2]時(shí),若曲線C:y=f(x)上的點(diǎn)(x,y)都在不等式組$\left\{{\begin{array}{l}{1≤x≤2}\\{x≤y}\\{y≤x+\frac{3}{2}}\end{array}}$所表示的平面區(qū)域內(nèi),試求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案