將棱長(zhǎng)為的正方體截去一半(如圖甲所示)得到如圖乙所示的幾何體,點(diǎn)分別是的中點(diǎn).

(Ⅰ)證明:;
(Ⅱ)求三棱錐的體積.
(Ⅰ)詳見解析;(Ⅱ) .

試題分析:(Ⅰ)證明:,證明兩線垂直,只需證一線垂直另一線所在的平面,因此本題的關(guān)鍵是找平面,注意到過的線中,可考慮連接,看是否垂直平面,因此本題轉(zhuǎn)化為只要證明即可,由平面幾何知識(shí)易證;(Ⅱ)求棱錐的體積,直接求,底面面積及高都不好求,但注意到棱錐與棱錐是一個(gè)幾何體,而這個(gè)棱錐的高為,而的面積,故體積容易求,值得注意的是,當(dāng)一個(gè)幾何體的體積不好求是,可進(jìn)行轉(zhuǎn)化成其它幾何體來求.
試題解析:(Ⅰ)證:連接,交于點(diǎn),∵平面,平面,∴,
∵點(diǎn),分別是, 的中點(diǎn), ∴, 又∵,,∴,∴,又∵,∴
,即,又∵,∴平面,
又∵平面,∴;
(Ⅱ)解:∵平面,∴是三棱錐的高,且,
∵點(diǎn),分別是,的中點(diǎn),∴,∴,∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求證:P,Q,R三點(diǎn)共線.

(2)如圖,空間四邊形ABCD中,E,F分別是AB和CB上的點(diǎn),G,H分別是CD和AD上的點(diǎn),  且EH與FG相交于點(diǎn)K. 求證:EH,BD,FG三條直線相交于同一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱拄中,側(cè)面,已知,.

(Ⅰ)求證:平面;
(Ⅱ)試在棱(不包含端點(diǎn))上確定一點(diǎn)的位置,使得;
(Ⅲ)在(Ⅱ)的條件下,求和平面所成角正弦值的大小.                                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),曲線處的切線過點(diǎn).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平行四邊形的兩鄰邊的長(zhǎng)為,當(dāng)它分別饒邊旋轉(zhuǎn)一周后,所形成的幾何體的體積之比為(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓錐的表面積為6,且它的側(cè)面展開圖是一個(gè)半圓,則這個(gè)圓錐的底面半徑為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平行四邊形中,,的面積為,則平行四邊形的面積為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點(diǎn),則在原來的正方體中(     )

A.              B.
C. AB與CD所成的角為    D. AB與CD相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直線三棱柱ABC—A1B1C1中,AB=AC=1,∠BAC=90°,異面直線A1B與B1C1所成的角為60°.

(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設(shè)D是BB1的中點(diǎn),求DC1與平面A1BC1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案