g(x) = mx + 2,.使g(x1) = f (x0),則m的取值范圍       

 

【答案】

 . 

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx
x

(I)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)若y=xf(x)+
1
x
的圖象總在直線y=a的上方,求實數(shù)a的取值范圍;
(Ⅲ)若函數(shù)f(x)與g(x)=
1
6
x-
m
x
+
2
3
的圖象有公共點,且在公共點處的切線相同,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l與函數(shù)f(x)=lnx的圖象相切于點(1,0),且l與函數(shù)g(x)=
1
2
x2+mx+
7
2
(m<0)的圖象也相切.
(Ⅰ)求直線l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)(其中g(shù)′(x)是g(x)的導函數(shù)),求函數(shù)h(x)的最大值;
(Ⅲ)當0<a<1時,求證:f(1+a)-f(2)<
a-1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l與函數(shù)f(x)=lnx的圖象相切于點(1,0),且l與函數(shù)g(x)=
1
2
x2+mx+
7
2
(m<0)
的圖象也相切.
(I)求直線l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g'(x),求函數(shù)h(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
,(m<0)
,直線l與函數(shù)f(x)、g(x)的圖象都相切,且與f(x)圖象的切點為(1,f(x)),則m=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寧德模擬)已知曲線f(x)=ax+blnx-1在點(1,f(1))處的切線為直線y=0.
(1)求實數(shù)a,b的值;
(2)設函數(shù)g(x)=
x2
2
-mx+mf(x)
,其中m為常數(shù).
(i)求g(x)的單調(diào)遞增區(qū)間;
(ii)求證:當1<m<3,x∈(1,e)(其中e=2.71828…)時,總有-
3
2
(1+ln3)<g(x)<
e2
2
-2
成立.

查看答案和解析>>

同步練習冊答案