如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
1
2

(1)求證:面SAB⊥面SBC;
(2)求面SAD與面SDC所成角的余弦值.
考點:平面與平面垂直的判定,與二面角有關的立體幾何綜合題
專題:空間位置關系與距離,空間角
分析:(1)由SA⊥面ABCD,知SA⊥BC,由AB⊥BC,BC⊥面SAB,由此能夠證明面SAB⊥面SBC.
(2)以A為原點,AD為x軸,AB為y軸,AS為z軸,建立空間直角坐標系,利用向量法能求出面SAD與面SDC所成角的余弦值.
解答: (1)證明:∵SA⊥面ABCD,BC?面ABCD,
∴SA⊥BC,
∵AB⊥BC,SA∩AB=A,
∴BC⊥面SAB 
∵BC?面SBC
∴面SAB⊥面SBC.
(2)解:以A為原點,AD為x軸,AB為y軸,AS為z軸,
建立空間直角坐標系,
∵SA=AB=BC=1,AD=
1
2
,
∴S(0,0,1),D(
1
2
,0,0),C(1,1,0),
SD
=(
1
2
,0,-1)
SC
=(1,1,-1),
設平面SCD的法向量
n
=(x,y,z)
,
n
SD
=
1
2
x-z=0
n
SC
=x+y-z=0
,取x=2,得
n
=(2,-1,1),
又面SAD的法向量
m
=(0,1,0),
cos<
n
,
m
>=
-1
6
=-
6
6

∴面SAD與面SDC所成角的余弦值為
6
6
點評:本題考查面面垂直的證明,考查二面角的余弦值的求法,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+4n(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若b1=3,且bn+1-bn=an(n∈N*),求數(shù)列{
1
bn
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知AC=3,三個內(nèi)角A,B,C成等差數(shù)列.
(1)若cosC=
6
3
,求AB;    
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-2≤x≤4},B={x|x<a},且滿足A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)求復數(shù)z=
1
1-i
的共軛復數(shù)
(2)∫
 
2
0
|1-x|dx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,b2=5,且公差d=2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)是否存在正整數(shù)n,使得a1b1+a2b2+…+anbn>60n?若存在,求n的最小值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.
(1)求證:圓心O在直線AD上;
(2)若BC=2,求GC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log
1
2
(x-x2)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知點A的坐標為(3,a),a∈R,點P滿足
OP
OA
,λ∈R,|
OA
|•|
OP
|=72,則線段OP在x軸上的投影長度的最大值為
 

查看答案和解析>>

同步練習冊答案