科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省南通市通州區(qū)高三4月查漏補缺專項檢測數(shù)學試卷(解析版) 題型:解答題
已知數(shù)列單調(diào)遞增,且各項非負,對于正整數(shù),若任意的,(≤≤≤),仍是中的項,則稱數(shù)列為“項可減數(shù)列”.
(1)已知數(shù)列是首項為2,公比為2的等比數(shù)列,且數(shù)列是“項可減數(shù)
列”,試確定的最大值;
(2)求證:若數(shù)列是“項可減數(shù)列”,則其前項的和;
(3)已知是各項非負的遞增數(shù)列,寫出(2)的逆命題,判斷該逆命題的真假,
并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市徐匯區(qū)高三4月學習能力診斷理科數(shù)學試卷(解析版) 題型:解答題
第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分8分.
如果存在常數(shù)使得數(shù)列滿足:若是數(shù)列中的一項,則也是數(shù)列中的一項,稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求和的值;
(2)已知有窮等差數(shù)列的項數(shù)是,所有項之和是,求證:數(shù)列是“兌換數(shù)列”,并用和表示它的“兌換系數(shù)”;
(3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年江蘇省鹽城中學高考數(shù)學三模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知等差數(shù)列為遞增數(shù)列,滿足,在等比數(shù)
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列的前項和為,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com