【題目】如圖,在正方形ABCD中,E、F分別為AB、BC的中點(diǎn),現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點(diǎn)重合,重合后的點(diǎn)記為P.

問(wèn):(1)這個(gè)幾何體是什么?

(2)這個(gè)幾何體由幾個(gè)面構(gòu)成?每個(gè)面的三角形是什么三角形?

【答案】(1)這個(gè)幾何體是三棱錐.

(2)這個(gè)幾何體由四個(gè)面構(gòu)成,分別為面DEF、面DFP、面DEP、面EFP.△DEF為等腰三角形,△DFP、△EFP、△DEP均為直角三角形.

【解析】

(1)根據(jù)題意,分析可得這個(gè)幾何體是三棱錐;

(2)由三棱錐的幾何結(jié)構(gòu)分析可得答案.

1)根據(jù)題意,得到的幾何體為三棱錐;

2)這個(gè)幾何體由四個(gè)面構(gòu)成,即面DEF、面DFP、面DEP、面EFP

又由DEDF,∠DPE=∠EPF=∠DPF=90°,

所以△DEF為等腰三角形,△DFP、△EFP、△DEP為直角三角形;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)點(diǎn)并且與圓相外切,動(dòng)圓圓心的軌跡為.

Ⅰ)求曲線的軌跡方程;

Ⅱ)過(guò)點(diǎn)的直線與軌跡交于兩點(diǎn),設(shè)直線,設(shè)點(diǎn),直線,求證:直線經(jīng)過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的極值;

2)當(dāng)時(shí),討論的單調(diào)性;

3)若對(duì)任意的,,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線,的極坐標(biāo)方程分別為,.

(1)將直線的參數(shù)方程化為極坐標(biāo)方程,將的極坐標(biāo)方程化為參數(shù)方程;

(2)當(dāng)時(shí),直線交于,兩點(diǎn),與交于,兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)軸為直徑的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知過(guò)點(diǎn)的動(dòng)直線與橢圓的兩個(gè)交點(diǎn)為,求的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”(如下圖),四個(gè)全等的直角三角形(朱實(shí)),可以圍成一個(gè)大的正方形,中空部分為一個(gè)小正方形(黃實(shí)).若直角三角形中一條較長(zhǎng)的直角邊為8,直角三角形的面積為24,若在上面扔一顆玻璃小球,則小球落在黃實(shí)區(qū)域的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線y=1+與直線y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( )

A. (,+∞)B. (,]C. (0,)D. (,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的不等式,其中.

1)當(dāng)時(shí),求不等式的解集A

2)若,試求不等式的解集B;

3)設(shè)原不等式的解集為C,記(其中為整數(shù)集),試探究集合M能否為有限集?若能,求出使得集合M中元素個(gè)數(shù)最少的實(shí)數(shù)的所有取值,并用列舉法表示集合M;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖所示的某種容器的體積為,它是由圓錐和圓柱兩部分連接而成,圓柱與圓錐的底面半徑都為.圓錐的高為,母線與底面所成的角為;圓柱的高為,已知圓柱底面的造價(jià)為,圓柱側(cè)面造價(jià)為,圓錐側(cè)面造價(jià)為

(1)將圓柱的高表示為底面半徑的函數(shù),并求出定義域;

(2)當(dāng)容器造價(jià)最低時(shí),圓柱的底面半徑為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案