【題目】將函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個(gè)單位長(zhǎng)度后得到函數(shù)f(x)的圖象
(1)寫(xiě)出函數(shù)f(x)的解析式;
(2)若對(duì)任意的x∈[﹣ , ],f2(x)﹣mf(x)﹣1≤0恒成立,求實(shí)數(shù)m的取值范圍;
(3)求實(shí)數(shù)a和正整數(shù)n,使得F(x)=f(x)﹣a在[0,nπ]上恰有2017個(gè)零點(diǎn).

【答案】
(1)解:把函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),可得y=sin2x的圖象;

再將所得的圖象向左平移 個(gè)單位長(zhǎng)度后得到函數(shù)f(x)=sin2(x+ )=sin(2x+ )的圖象,

故函數(shù)f(x)的解析式為 f(x)=sin(2x+ ).


(2)解:若對(duì)任意的x∈[﹣ , ],2x+ ∈[0, ],f(x)=sin(2x+ )∈[0,1],f2(x)﹣mf(x)﹣1≤0恒成立,

令t=f(x)∈[0,1],則g(t)=t2﹣mt﹣1≤0恒成立,故有g(shù)(0)=﹣1≤0,且 g(1)=﹣m≤0,解得m≥0.


(3)解:∵F(x)=f(x)﹣a在[0,nπ]上恰有2017個(gè)零點(diǎn),故f(x)的圖象和直線(xiàn)y=a在[0,nπ]上恰有2017個(gè)交點(diǎn).

在[0,π]上,2x+ ∈[ ].

①當(dāng)a>1,或a<﹣1時(shí),f(x)的圖象和直線(xiàn)y=a在[0,nπ]上無(wú)交點(diǎn).

②當(dāng)a=1,或a=﹣1時(shí),f(x)的圖象和直線(xiàn)y=a在[0,π]僅有一個(gè)交點(diǎn),

此時(shí),f(x)的圖象和直線(xiàn)y=a在[0,nπ]上恰有2017個(gè)交點(diǎn),則n=2017.

③當(dāng)﹣1<a< ,或 <a<1時(shí),f(x)的圖象和直線(xiàn)y=a在[0,π]上恰有2個(gè)交點(diǎn),

f(x)的圖象和直線(xiàn)y=a在[0,nπ]上有偶數(shù)個(gè)交點(diǎn),不會(huì)有2017個(gè)交點(diǎn).

④當(dāng)a= 時(shí),f(x)的圖象和直線(xiàn)y=a在[0,π]上恰有3個(gè)交點(diǎn),

此時(shí),n=1008,才能使f(x)的圖象和直線(xiàn)y=a在[0,nπ]上有2017個(gè)交點(diǎn).

綜上可得,當(dāng)a=1,或a=﹣1時(shí),n=2017;當(dāng)a= 時(shí),此時(shí),n=1008.


【解析】(1)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得f(x)的解析式.(2)令t=f(x)∈[0,1],則g(t)=t2﹣mt﹣1≤0恒成立,再根據(jù)二次函數(shù)的性質(zhì)可得g(0)=﹣1≤0,且 g(1)=﹣m≤0,由此解得m的范圍.(3)由題意可得f(x)的圖象和直線(xiàn)y=a在[0,nπ]上恰有2017個(gè)交點(diǎn),分類(lèi)討論,求得a、n的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)y=Asin(ωx+φ)的圖象變換(圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知指數(shù)函數(shù)y=g(x)滿(mǎn)足:g(3)=27,定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=kx﹣g(x)在(0,1)上有零點(diǎn),求k的取值范圍;
(3)若對(duì)任意的t∈(1,4),不等式f(2t﹣3)+f(t﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) ,P為雙曲線(xiàn)上一點(diǎn),F(xiàn)1 , F2是雙曲線(xiàn)的兩個(gè)焦點(diǎn),且∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商區(qū)停車(chē)場(chǎng)臨時(shí)停車(chē)按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車(chē)一次停車(chē)不超過(guò)1小時(shí)收費(fèi)6元,超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙二人在該商區(qū)臨時(shí)停車(chē),兩人停車(chē)都不超過(guò)4小時(shí). (Ⅰ)若甲停車(chē)1小時(shí)以上且不超過(guò)2小時(shí)的概率為 ,停車(chē)付費(fèi)多于14元的概率為 ,求甲停車(chē)付費(fèi)恰為6元的概率;
(Ⅱ)若每人停車(chē)的時(shí)長(zhǎng)在每個(gè)時(shí)段的可能性相同,求甲、乙二人停車(chē)付費(fèi)之和為36元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生產(chǎn)甲乙兩種元件,其質(zhì)量按檢測(cè)指標(biāo)劃分為:指標(biāo)大于或者等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

元件甲

8

12

40

32

8

元件乙

7

18

40

29

6

(1)試分別估計(jì)元件甲、乙為正品的概率;

(2)生產(chǎn)一件元件甲,若是正品可盈利40元,若是次品則虧損5元,生產(chǎn)一件元件乙,若是正品可盈利50元,若是次品則虧損10元.在(1)的前提下:

(i)記為生產(chǎn)1件甲和1件乙所得的總利潤(rùn),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(ii)求生產(chǎn)5件元件乙所獲得的利潤(rùn)不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)>f(x),且f(x+2)為奇函數(shù),f(4)=﹣1,則不等式f(x)<ex的解集為(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(﹣∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= x3 ax2+(a﹣1)x+1在區(qū)間(2,3)內(nèi)為減函數(shù),在區(qū)間(5,+∞)為增函數(shù),則實(shí)數(shù)a的取值范圍是(
A.[3,4]
B.[5,7]
C.[4,6]
D.[7,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從2 012名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競(jìng)賽,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從2 012人中剔除12人,剩下的2 000人再按系統(tǒng)抽樣的方法抽取50人,則在2 012人中,每人入選的概率(
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣( n1+2(n∈N*),數(shù)列{bn}滿(mǎn)足bn=2nan . (Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2 ,數(shù)列{ }的前n項(xiàng)和為T(mén)n , 求滿(mǎn)足Tn (n∈N*)的n的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案