【題目】某商區(qū)停車場(chǎng)臨時(shí)停車按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時(shí)收費(fèi)6元,超過1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙二人在該商區(qū)臨時(shí)停車,兩人停車都不超過4小時(shí). (Ⅰ)若甲停車1小時(shí)以上且不超過2小時(shí)的概率為 ,停車付費(fèi)多于14元的概率為 ,求甲停車付費(fèi)恰為6元的概率;
(Ⅱ)若每人停車的時(shí)長(zhǎng)在每個(gè)時(shí)段的可能性相同,求甲、乙二人停車付費(fèi)之和為36元的概率.

【答案】解:(Ⅰ)設(shè)“甲臨時(shí)停車付費(fèi)恰為6元”為事件A, 則
所以甲臨時(shí)停車付費(fèi)恰為6元的概率是
(Ⅱ)設(shè)甲停車付費(fèi)a元,乙停車付費(fèi)b元,其中a,b=6,14,22,30.
則甲、乙二人的停車費(fèi)用構(gòu)成的基本事件空間為:(6,6),(6,14),(6,22),(6,30),(14,6),(14,14),(14,22),(14,30),(22,6),(22,14),(22,22),(22,30),(30,6),(30,14),(30,22),(30,30),共16種情形.
其中,(6,30),(14,22),(22,14),(30,6)這4種情形符合題意.
故“甲、乙二人停車付費(fèi)之和為36元”的概率為
【解析】(Ⅰ)根據(jù)題意,由全部基本事件的概率之和為1求解即可.(Ⅱ)先列出甲、乙二人停車付費(fèi)之和為36元的所有情況,再利用古典概型及其概率計(jì)算公式求概率即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=﹣x3+3x+2分別在x1、x2處取得極小值、極大值.xOy平面上點(diǎn)A、B的坐標(biāo)分別為(x1 , f(x1))、(x2 , f(x2)),該平面上動(dòng)點(diǎn)P滿足 =4.求:
(1)求點(diǎn)A、B的坐標(biāo);
(2)求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],下列命題中正確命題的序號(hào)
①函數(shù)f(x)的最大值為1;
②函數(shù)f(x)的最小值為0;
③方程f(x)﹣ =0有無數(shù)個(gè)解;
④函數(shù)f(x)是增函數(shù);
⑤對(duì)任意的x∈R,函數(shù)f(x)滿足f(x+1)=f(x);
⑥函數(shù)f(x)的圖象與函數(shù)g(x)=|lgx|的圖象的交點(diǎn)個(gè)數(shù)為10個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,把方程f(x)-x=0的根按從小到大順序排成一個(gè)數(shù)列,則該數(shù)列的前n項(xiàng)和Sn=_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a是實(shí)數(shù),函數(shù)f(x)=x2(x﹣a). (Ⅰ)若f′(1)=3,求a的值及曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,,8)數(shù)據(jù)作了初步處理, 得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

其中wi= , =
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d 哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤(rùn)z與x、y的關(guān)系為z=0.2y﹣x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(i)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
(ii)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(u1 , v1),(u2 , v2),,(un , vn),其回歸直線v=α+βμ的斜率和截距的最小二乘估計(jì)分別為: = =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個(gè)單位長(zhǎng)度后得到函數(shù)f(x)的圖象
(1)寫出函數(shù)f(x)的解析式;
(2)若對(duì)任意的x∈[﹣ ],f2(x)﹣mf(x)﹣1≤0恒成立,求實(shí)數(shù)m的取值范圍;
(3)求實(shí)數(shù)a和正整數(shù)n,使得F(x)=f(x)﹣a在[0,nπ]上恰有2017個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =(sinx, cosx), =(﹣1,1), =(1,1),其中x∈(0,π].
(1)若( + )∥ ,求實(shí)數(shù)x的值;
(2)若 = ,求函數(shù)sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2是橢圓與雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且|PF1|>|PF2|,橢圓的離心率為e1 , 雙曲線的離心率為e2 , 若|PF2|=|F1F2|,則 + 的最小值為(
A.6+2
B.8
C.6+2
D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案