15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,過右焦點F2的直線交雙曲線右支于A、B兩點,連結(jié)AF1、BF1,若|AB|=|BF1|且$∠AB{F_1}={90^o}$,則雙曲線的離心率為( 。
A.$5-2\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.$6-3\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

分析 運用雙曲線的定義可得|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,結(jié)合等腰直角三角形可得|AF1|=4a,設(shè)|BF1|=x,運用勾股定理,可得a,c的關(guān)系,由離心率公式即可得到所求.

解答 解:由雙曲線的定義可得|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,
相加可得|AF1|+|BF1|-|AB|=4a,
|AB|=|BF1|且$∠AB{F_1}={90^o}$,
∴|AF1|=4a,設(shè)|BF1|=x,
則$x=\frac{4a}{{\sqrt{2}}}=2\sqrt{2}a$,$|{B{F_2}}|=2\sqrt{2}a-2a$,
又∵${|{B{F_1}}|^2}+{|{B{F_2}}|^2}=4{c^2}$,
即有8a2+(2$\sqrt{2}$a-2a)2=4c2,
化簡可得(5-2$\sqrt{2}$)a2=c2,
即有e=$\frac{c}{a}$=$\sqrt{5-2\sqrt{2}}$.
故選:B.

點評 本題考查雙曲線的定義、方程和性質(zhì),考查勾股定理和離心率的求法,注意運用方程思想和轉(zhuǎn)化思想,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.甲口袋內(nèi)裝有大小相等的8個紅球和4個白球,乙口袋內(nèi)裝有大小相等的9個紅球和3個白球,從兩個口袋內(nèi)各摸出1個球,那么$\frac{5}{12}$等于(  )
A.2個球都是白球的概率B.2個球中恰好有1個是白球的概率
C.2個球都不是白球的概率D.2個球不都是紅球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=m+t\\ y=t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=12,點F的極坐標(biāo)為(2$\sqrt{2}$,π),且F在直線l上.
(Ⅰ)若直線l與曲線C交于A、B兩點,求|FA|•|FB|的值;
(Ⅱ)求曲線C內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2AD=4,$BD=2\sqrt{3}$,PD⊥底面ABCD.
(1)證明:平面PBC⊥平面PBD;
(2)若二面角P-BC-D的大小為$\frac{π}{6}$,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.如圖是根據(jù)環(huán)保部門某日早6點至晚9點在惠農(nóng)縣、平羅縣兩個地區(qū)附近的PM2.5監(jiān)測點統(tǒng)計的數(shù)據(jù)(單位:毫克/立方米)列出的莖葉圖,惠農(nóng)縣、平羅縣兩個地區(qū)濃度的方差較小的是( 。
A.惠農(nóng)縣B.平羅縣
C.惠農(nóng)縣、平羅縣兩個地區(qū)相等D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知{an}是各項均為正數(shù)的等比數(shù)列(公比q>1),bn=log2an,b1+b2+b3=3,b1b2b3=-3,則an=( 。
A.${a_n}={2^{2n-3}}$B.${a_n}={2^{5-2n}}$
C.${a_n}={2^{2n-5}}$D.${a_n}={2^{2n-3}}$或${a_n}={2^{5-2n}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若不等式x2-kx+k-1=0對x∈(1,2)恒成立,則實數(shù)k的取值范圍是( 。
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣的一個問題:“三百七十八里路,初步健步不為難,次日腳痛減一半,六朝才得其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意是:“有一個人走378里路,第一天健步行走,從第二天起腳痛,每天走的路程是前一天的一半,走了6天后才到達目的地.”則該人第四天走的路程為(  )
A.3里B.6里C.12里D.24里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知a=1,c=2,$cosC=\frac{1}{4}$,則△ABC的面積為(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{{\sqrt{15}}}{4}$D.$\frac{{\sqrt{15}}}{8}$

查看答案和解析>>

同步練習(xí)冊答案