設集合A={x∈R|x>1},B={x∈R|-1≤x≤2},則A∩B=( 。
A、[-1,+∞)
B、(1,+∞)
C、(1,2]
D、[-1,1)
考點:交集及其運算
專題:集合
分析:根據(jù)題意和交集的運算直接求出A∩B,再表示成區(qū)間的形式.
解答: 解:由題意得,集合A={x∈R|x>1},B={x∈R|-1≤x≤2},
則A∩B={x∈R|1<x≤2}=(1,2],
故選:C.
點評:本題考查了交集及其運算,以及對應區(qū)間的表示方法,注意開閉,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設x=log2014
1
4
,y=2014
1
2
,z=
4028
-
2014
,由x,y,z的大小關(guān)系為( 。
A、y<z<x
B、z<x<y
C、x<y<z
D、x<z<y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線3x+4y-3=0與直線6x+my+14=0平行,求這兩條平行線之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(z)=1-
.
z
,z1=2+3i,z2=2+i,則|f(z1+z2)|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
log
1
3
(x-3)
的定義域為( 。
A、(3,+∞)
B、[3,+∞)
C、(3,4]
D、(-∞,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足
x2-x-6≤0
x2+2x-8>0.

(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若?p是?q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x的方程x2+x•sin2θ-sinθ•cotθ=0的兩根為α、β且0<θ<2π,若數(shù)列1,(
1
α
+
1
β
),(
1
α
+
1
β
2…的前2008項和為0,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c為正實數(shù)且滿足a+2b+3c=6,
(Ⅰ)求abc的最大值;
(Ⅱ)求
a+1
+
2b+1
+
3c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U=R,集合A={x|
x+1
x-2
≥0
},B={x|1<2x<8},則(∁UA)∩B等于( 。
A、[-1,3)
B、(0,2]
C、(1,2]
D、(2,3)

查看答案和解析>>

同步練習冊答案