8.已知sin(π-α)=$\frac{1}{3}$,sin2α>0,則tanα=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{3}$D.2$\sqrt{2}$

分析 判斷角所在象限,求出余弦函數(shù)值,然后求解即可.

解答 解:sin(π-α)=$\frac{1}{3}$,可得sinα=$\frac{1}{3}$,sin2α>0,
所以cosα>0,α是第一象限角,
cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{2}}{3}$.
∴tanα=$\frac{sinα}{cosα}$=$\frac{\sqrt{2}}{4}$.
故選:B.

點(diǎn)評(píng) 本題考查三角函數(shù)化簡(jiǎn)求值,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$不共線,且$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BA}$,則向量$\overrightarrow{OM}$=( 。
A.$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$B.$\frac{2}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$C.$\frac{1}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$D.$\frac{1}{3}$$\overrightarrow{OA}$-$\frac{4}{3}$$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若非零向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=$\frac{{2\sqrt{2}}}{3}$|${\overrightarrow b}$|,且($\overrightarrow a$-$\overrightarrow b$)⊥(3$\overrightarrow a$+2$\overrightarrow b$),則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.πB.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若(3x+$\frac{1}{x}$)n(n∈N*)的展開式中各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則正整數(shù)n的值為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某市教育局委托調(diào)查機(jī)構(gòu)對(duì)本市中小學(xué)學(xué)校使用“微課掌上通”滿意度情況進(jìn)行調(diào)查.隨機(jī)選擇小學(xué)和中學(xué)各50所學(xué)校進(jìn)行調(diào)查,調(diào)查情況如表:
評(píng)分等級(jí)☆☆☆☆☆☆☆☆☆☆☆☆☆☆
小學(xué)2792012
中學(xué)3918128
(備注:“☆”表示評(píng)分等級(jí)的星級(jí),例如“☆☆☆”表示3星級(jí).)
(1)從評(píng)分等級(jí)為5星級(jí)的學(xué)校中隨機(jī)選取兩所學(xué)校,求恰有一所學(xué)校是中學(xué)的概率;
(2)規(guī)定:評(píng)分等級(jí)在4星級(jí)以上(含4星)為滿意,其它星級(jí)為不滿意.完成下列2×2列聯(lián)表并幫助判斷:能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為使用是否滿意與學(xué)校類別有關(guān)系?
學(xué)校類型滿意不滿意總計(jì)
小學(xué)50
中學(xué)50
總計(jì)100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸入n的值為4,則輸出S的值是( 。
A.1B.2C.4D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)離散型隨機(jī)變量ξ的概率分布如表:
ξ0123
P$\frac{1}{5}$$\frac{1}{5}$$\frac{1}{10}$p
則p的值為(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)f(x)=x($\frac{1}{2}$)x+$\frac{1}{x+2}$,O為坐標(biāo)原點(diǎn),An為函數(shù)y=f(x)圖象上橫坐標(biāo)為n(n∈N*)的點(diǎn),向量$\overrightarrow{O{A_n}}$與向量$\overrightarrow i$=(1,0)的夾角為αn,則滿足tanα1+tanα2+…+tanαn<$\frac{5}{4}$的最大整數(shù)n的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\frac{x}{{e}^{x}}$-ax+a,若存在唯一的整數(shù)x0,使得f(x0)>1,則a的取值范圍是( 。
A.(1,2]B.(1,$\frac{e+1}{2}$]C.(1,$\frac{2e}{3}$]D.(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案