【題目】已知橢圓C1:(a>b>0)的右焦點(diǎn)F與拋物線C2的焦點(diǎn)重合,C1的中心與C2的頂點(diǎn)重合.過F且與x軸重直的直線交C1于A,B兩點(diǎn),交C2于C,D兩點(diǎn),且|CD|=|AB|.
(1)求C1的離心率;
(2)若C1的四個(gè)頂點(diǎn)到C2的準(zhǔn)線距離之和為12,求C1與C2的標(biāo)準(zhǔn)方程.
【答案】(1);(2):,: .
【解析】
(1)根據(jù)題意求出的方程,結(jié)合橢圓和拋物線的對(duì)稱性不妨設(shè)在第一象限,運(yùn)用代入法求出點(diǎn)的縱坐標(biāo),根據(jù),結(jié)合橢圓離心率的公式進(jìn)行求解即可;
(2)由(1)可以得到橢圓的標(biāo)準(zhǔn)方程,確定橢圓的四個(gè)頂點(diǎn)坐標(biāo),再確定拋物線的準(zhǔn)線方程,最后結(jié)合已知進(jìn)行求解即可;
解:(1)因?yàn)闄E圓的右焦點(diǎn)坐標(biāo)為:,所以拋物線的方程為,其中.
不妨設(shè)在第一象限,因?yàn)闄E圓的方程為:,
所以當(dāng)時(shí),有,因此的縱坐標(biāo)分別為,;
又因?yàn)閽佄锞的方程為,所以當(dāng)時(shí),有,
所以的縱坐標(biāo)分別為,,故,.
由得,即,解得(舍去),.
所以的離心率為.
(2)由(1)知,,故,所以的四個(gè)頂點(diǎn)坐標(biāo)分別為,,,,的準(zhǔn)線為.
由已知得,即.
所以的標(biāo)準(zhǔn)方程為,的標(biāo)準(zhǔn)方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對(duì)其身高和臂展進(jìn)行測(cè)量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對(duì)應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代教育要求學(xué)生掌握“六藝”,即“禮、樂、射、御、書、數(shù)”.某校為弘揚(yáng)中國(guó)傳統(tǒng)文化,舉行有關(guān)“六藝”的知識(shí)競(jìng)賽.甲、乙、丙三位同學(xué)進(jìn)行了決賽.決賽規(guī)則:決賽共分場(chǎng),每場(chǎng)比賽的第一名、第二名、第三名的得分分別為,選手最后得分為各場(chǎng)得分之和,決賽結(jié)果是甲最后得分為分,乙和丙最后得分都為分,且乙在其中一場(chǎng)比賽中獲得第一名,現(xiàn)有下列說法:
①每場(chǎng)比賽第一名得分分;
②甲可能有一場(chǎng)比賽獲得第二名;
③乙有四場(chǎng)比賽獲得第三名;
④丙可能有一場(chǎng)比賽獲得第一名.
則以上說法中正確的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B分別為橢圓E:(a>1)的左、右頂點(diǎn),G為E的上頂點(diǎn),,P為直線x=6上的動(dòng)點(diǎn),PA與E的另一交點(diǎn)為C,PB與E的另一交點(diǎn)為D.
(1)求E的方程;
(2)證明:直線CD過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某沙漠地區(qū)經(jīng)過治理,生態(tài)系統(tǒng)得到很大改善,野生動(dòng)物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動(dòng)物的數(shù)量,將其分成面積相近的200個(gè)地塊,從這些地塊中用簡(jiǎn)單隨機(jī)抽樣的方法抽取20個(gè)作為樣區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個(gè)樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動(dòng)物的數(shù)量,并計(jì)算得,,,,.
(1)求該地區(qū)這種野生動(dòng)物數(shù)量的估計(jì)值(這種野生動(dòng)物數(shù)量的估計(jì)值等于樣區(qū)這種野生動(dòng)物數(shù)量的平均數(shù)乘以地塊數(shù));
(2)求樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù)(精確到0.01);
(3)根據(jù)現(xiàn)有統(tǒng)計(jì)資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動(dòng)物數(shù)量更準(zhǔn)確的估計(jì),請(qǐng)給出一種你認(rèn)為更合理的抽樣方法,并說明理由.
附:相關(guān)系數(shù)r=,≈1.414.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知,動(dòng)點(diǎn)滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)若點(diǎn)M為(1)中軌跡上一動(dòng)點(diǎn),,直線MA與的另一個(gè)交點(diǎn)為N;記,若t值與點(diǎn)M位置無關(guān),則稱此時(shí)的點(diǎn)A為“穩(wěn)定點(diǎn)”.是否存在 “穩(wěn)定點(diǎn)”?若存在,求出該點(diǎn);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,分別為的左、右頂點(diǎn).
(1)求的方程;
(2)若點(diǎn)在上,點(diǎn)在直線上,且,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古代數(shù)學(xué)名著《九章算術(shù)》中記載:“今有羨除,下廣六尺,上廣一丈,深三尺,末廣八尺,無深,袤七尺,問積幾何?”羨除,即三個(gè)面是等腰梯形,兩側(cè)面是直角三角形的五面體我們教室打掃衛(wèi)生用的灰斗近似于一個(gè)羨除,又有所不同.如圖所示,ABCD是一個(gè)矩形,ABEF和CDFE都是等腰梯形,且平面ABCD⊥平面ABEF,AB=30,BC=10,EF=50,BE=26.則這個(gè)灰斗的體積是( )
A.3600B.4000C.4400D.4800
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com