【題目】已知A、B分別為橢圓E:(a>1)的左、右頂點(diǎn),G為E的上頂點(diǎn),,P為直線x=6上的動(dòng)點(diǎn),PA與E的另一交點(diǎn)為C,PB與E的另一交點(diǎn)為D.
(1)求E的方程;
(2)證明:直線CD過(guò)定點(diǎn).
【答案】(1);(2)證明詳見(jiàn)解析.
【解析】
(1)由已知可得:, ,,即可求得,結(jié)合已知即可求得:,問(wèn)題得解.
(2)設(shè),可得直線的方程為:,聯(lián)立直線的方程與橢圓方程即可求得點(diǎn)的坐標(biāo)為,同理可得點(diǎn)的坐標(biāo)為,當(dāng)時(shí),可表示出直線的方程,整理直線的方程可得:即可知直線過(guò)定點(diǎn),當(dāng)時(shí),直線:,直線過(guò)點(diǎn),命題得證.
(1)依據(jù)題意作出如下圖象:
由橢圓方程可得:, ,
,
,
橢圓方程為:
(2)證明:設(shè),
則直線的方程為:,即:
聯(lián)立直線的方程與橢圓方程可得:,整理得:
,解得:或
將代入直線可得:
所以點(diǎn)的坐標(biāo)為.
同理可得:點(diǎn)的坐標(biāo)為
當(dāng)時(shí),
直線的方程為:,
整理可得:
整理得:
所以直線過(guò)定點(diǎn).
當(dāng)時(shí),直線:,直線過(guò)點(diǎn).
故直線CD過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠肺炎期間某商場(chǎng)開(kāi)通三種平臺(tái)銷(xiāo)售商品,收集一月內(nèi)的數(shù)據(jù)如圖1;為了解消費(fèi)者對(duì)各平臺(tái)銷(xiāo)售方式的滿(mǎn)意程度,該商場(chǎng)用分層抽樣的方法抽取4%的顧客進(jìn)行滿(mǎn)意度調(diào)查,得到的數(shù)據(jù)如圖2.下列說(shuō)法錯(cuò)誤的是( )
A.樣本容量為240
B.若樣本中對(duì)平臺(tái)三滿(mǎn)意的人數(shù)為40,則
C.總體中對(duì)平臺(tái)二滿(mǎn)意的消費(fèi)者人數(shù)約為300
D.樣本中對(duì)平臺(tái)一滿(mǎn)意的人數(shù)為24人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋數(shù)學(xué)家楊輝在所著的《詳解九章算法》一書(shū)中用如圖所示的三角形解釋二項(xiàng)展開(kāi)式的系數(shù)規(guī)律,去掉所有為1的項(xiàng),依次構(gòu)成2,3,3,4,6,4,5,10,10,5,6…,則此數(shù)列的前50項(xiàng)和為( )
A.2025B.3052C.3053D.3049
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為圓錐的頂點(diǎn),是圓錐底面的圓心,是底面的內(nèi)接正三角形,為上一點(diǎn),∠APC=90°.
(1)證明:平面PAB⊥平面PAC;
(2)設(shè)DO=,圓錐的側(cè)面積為,求三棱錐PABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1:(a>b>0)的右焦點(diǎn)F與拋物線C2的焦點(diǎn)重合,C1的中心與C2的頂點(diǎn)重合.過(guò)F且與x軸重直的直線交C1于A,B兩點(diǎn),交C2于C,D兩點(diǎn),且|CD|=|AB|.
(1)求C1的離心率;
(2)若C1的四個(gè)頂點(diǎn)到C2的準(zhǔn)線距離之和為12,求C1與C2的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱ABC-A1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,M,N分別為BC,B1C1的中點(diǎn),P為AM上一點(diǎn),過(guò)B1C1和P的平面交AB于E,交AC于F.
(1)證明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)設(shè)O為△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直線B1E與平面A1AMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為拋物線的焦點(diǎn),過(guò)的動(dòng)直線交拋物線于,兩點(diǎn).當(dāng)直線與軸垂直時(shí),.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線相交于點(diǎn),拋物線上存在點(diǎn)使得直線,,的斜率成等差數(shù)列,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十五巧板、又稱(chēng)益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥(niǎo)獸、魚(yú)蟲(chóng)、文字等圖案.十五巧板由十五塊板組成一個(gè)大正方形(如圖1),其中標(biāo)號(hào)為2,3,4,5的小板均為等腰直角三角形,圖2是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點(diǎn),該點(diǎn)恰好取自陰影部分中的概率為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com