14.[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2,則[lg1]+[lg2]+[lg3]+…+[lg100]=92.

分析 由于[lg1]=[lg2]=[lg3]=…[lg9]=0,[lg10]=[lg11]=…+[lg99]=1,[lg100]=2.即可得出.

解答 解:∵[lg1]=[lg2]=[lg3]=…[lg9]=0,
[lg10]=[lg11]=…+[lg99]=1,
[lg100]=2.
∴[lg1]+[lg2]+[lg3]+…+[lg100]=90×1+2=92.
故答案為:92.

點評 本題考查了新定義、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等差數(shù)列{an}的前9項和等于99,a10=21,則a20=(  )
A.31B.41C.51D.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知定義域為R的函數(shù)f(x)滿足f(1)=3,且f(x)的導(dǎo)數(shù)f′(x)<2x+1,則不等式f(3x)≥9x2+3x+1的解集為(-∞,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若集合A={x|2x+1>0},B={x|2x-1<2},則A∩B={x|$\frac{1}{2}$<x<$\frac{3}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各數(shù)中,最小的數(shù)是(  )
A.75B.11111(2)C.210(6)D.85(9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知點P是圓O外一點,過P做圓O的切線PA,PB,切點分別為A,B,過P做一條割線交圓O于E,F(xiàn),若2PA=PF,取PF的中點D,連接AD,并延長交圓于H.
(1)求證:四點O,A,P,B共圓;
(2)求證:PB2=2ED×DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=tanx與y=2sin(2x+φ)(0<φ<π),且它們的圖象有一個橫坐標為$\frac{π}{4}$的交點,則ϕ值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)在極坐標系中,求過極點,傾斜角是$\frac{π}{3}$的直線的極坐標方程
(2)在極坐標系中,求圓心在$({3,\frac{π}{2}})$,半徑為3的圓的極坐標方程
(3)曲線C的極坐標方程為:ρ=2cosθ-4sinθ,求曲線C的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-2)x,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$,滿足對任意的實數(shù)x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則實數(shù)a的取值范圍為( 。
A.(-∞,2)B.[$\frac{13}{4}$,2)C.[$\frac{13}{8}$,2)D.(-∞,$\frac{13}{8}$]

查看答案和解析>>

同步練習(xí)冊答案