【題目】(1)已知:“直線與圓相交”; :“有一正根和一負根”.若為真, 為真,求的取值范圍.
(2)已知橢圓: 與圓: ,雙曲線與橢圓有相同的焦點,它的兩條漸近線恰好與圓相切.求雙曲線的方程.
【答案】(1) ;(2) .
【解析】試題分析:(1)先求出命題, 的等價條件,然后利用若為真,非為真,即可求出實數(shù)的取值范圍;(2)由橢圓方程求得雙曲線的焦點坐標,設雙曲線的方程為(, ),從而得到雙曲線的漸近線方程,利用圓心到兩條漸近線的距離為圓的半徑,即可求得, 的值,從而得到雙曲線的方程.
試題解析:(1)對:∵直線與圓相交,
∴,∴
對:方程有一正根一負根,
∴令
∴或解得
又∵為真
∴假
又∵為真
∴為真
∴由數(shù)軸可得,則的取值范圍是
(2)橢圓: 的兩個焦點為、
∴雙曲線的中心在原點,焦點在軸上,且
設雙曲線的方程為(, ),則的漸近線方程為,
即,且
又∵圓心為,半徑為
∴
∴,
∴雙曲線的方程為
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD;
(3)求四棱錐P—ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(3, ),點B的極坐標為(6, ),曲線C:(x﹣1)2+y2=1
(1)求曲線C和直線AB的極坐標方程;
(2)過點O的射線l交曲線C于M點,交直線AB于N點,若|OM||ON|=2,求射線l所在直線的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=bcosC+ csinB.
(1)若a=2,b= ,求c
(2)設函數(shù)y= sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位: ).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設生產(chǎn)狀態(tài)正常,記表示一天內(nèi)抽取的16個零件中其尺寸在之外的零件數(shù),求及的數(shù)學期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得,其中為
抽取的第個零件的尺寸, .
用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計和(精確到0.01).
附:若隨機變量服從正態(tài)分布,則, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )
A. 當時,“”是“”的充要條件
B. 當時,“”是“”的充分不必要條件
C. 當時,“”是“”的必要不充分條件
D. 當時,“”是“”的充分不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com