選修4-1:幾何證明選講
如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直
徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6,求BC的長.

【答案】分析:(Ⅰ)先得出點C在⊙O上,連接OC,可得∠OCA=∠OAC=∠DAC,從而OC∥AD,結合AD⊥DC得出DC⊥OC,從而DC是⊙O的切線
(Ⅱ)利用切割線定理求出EA=12,再證出△ECB∽△EAC,得出AC=BC,在RT△ACB中求解.
解答:(Ⅰ)證明:∵⊙O是以AB為直徑的圓,∠ACB=90°,∴點C在⊙O上,連接OC,可得∠OCA=∠OAC=∠DAC,∴OC∥AD,
又∵AD⊥DC,∴DC⊥OC,∵OC為半徑,∴DC是⊙O的切線.
(Ⅱ)解:∵DC是⊙O的切線,∴EC2=EB•EA,又∵EB=6,EC=6,∴EA=12.
∵∠ECB=∠EAC,∠CEB=∠AEC,∴△ECB∽△EAC,∴,AC=BC,
∵AC2+BC2=AB2=36,∴BC=
點評:本題考查圓的切線的證明,與圓有關的線段求解.需掌握切割線定理、弦切角定理等知識.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.
C.選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結AD交圓O于點E,連結BE與AC交于點F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習冊答案