如圖,已知直線l:x=my+1過橢圓C:=1的右焦點(diǎn)F,拋物線:x2=4y的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線g:x=4上的射影依次為點(diǎn)D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點(diǎn)M,且,當(dāng)m變化時,探求λ1+λ2的值是否為定值?若是,求出λ1+λ2的值,否則,說明理由;
(Ⅲ)連接AE、BD,試證明當(dāng)m變化時,直線AE與BD相交于定點(diǎn)N.
解:(Ⅰ)易知橢圓右焦點(diǎn)∴, 拋物線的焦點(diǎn)坐標(biāo)
橢圓的方程 3分 (Ⅱ)易知,且與軸交于, 設(shè)直線交橢圓于 由 ∴ ∴ 6分 又由
同理 ∴ ∵ ∴ 9分 所以,當(dāng)m變化時,的值為定值 10分 (Ⅲ)證明:由(Ⅱ)知,∴ 方法1)∵ 當(dāng)時,
∴點(diǎn)在直線上, 同理可證,點(diǎn)也在直線上; ∴當(dāng)m變化時,與相交于定點(diǎn) 14分 方法2)∵
∴∴A、N、E三點(diǎn)共線, 同理可得B、N、D也三點(diǎn)共線; ∴當(dāng)m變化時,AE與BD相交于定點(diǎn) 14分 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
MA |
AF |
MB |
BF |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
MA |
AF |
MB |
BF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
a2+1 |
2 |
AN |
NE |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com