【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.

【答案】
(1)證明:∵PA⊥底面ABCD,AD⊥AB,

以A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,

∵AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).

∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)

=(0,1,1), =(2,0,0)

=0,

∴BE⊥DC;


(2)解:∵ =(﹣1,2,0), =(1,0,﹣2),

設(shè)平面PBD的法向量 =(x,y,z),

,得

令y=1,則 =(2,1,1),

則直線BE與平面PBD所成角θ滿足:

sinθ= = = ,

故直線BE與平面PBD所成角的正弦值為


(3)解:∵ =(1,2,0), =(﹣2,﹣2,2), =(2,2,0),

由F點(diǎn)在棱PC上,設(shè) =(﹣2λ,﹣2λ,2λ)(0≤λ≤1),

= + =(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),

由BF⊥AC,得 =2(1﹣2λ)+2(2﹣2λ)=0,

解得λ=

=(﹣ , , ),

設(shè)平面FBA的法向量為 =(a,b,c),

,得

令c=1,則 =(0,﹣3,1),

取平面ABP的法向量 =(0,1,0),

則二面角F﹣AB﹣P的平面角α滿足:

cosα= = =

故二面角F﹣AB﹣P的余弦值為:


【解析】(1)以A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,求出BE,DC的方向向量,根據(jù) =0,可得BE⊥DC;(2)求出平面PBD的一個(gè)法向量,代入向量夾角公式,可得直線BE與平面PBD所成角的正弦值;(3)根據(jù)BF⊥AC,求出向量 的坐標(biāo),進(jìn)而求出平面FAB和平面ABP的法向量,代入向量夾角公式,可得二面角F﹣AB﹣P的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間角的異面直線所成的角的相關(guān)知識(shí),掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通常表明地震能量大小的尺度是里氏震級(jí),其計(jì)算公式為:,其中,是被測(cè)地震的最大振幅,是“標(biāo)準(zhǔn)地震”的振幅使用標(biāo)準(zhǔn)地震振幅是為了修正測(cè)震儀距實(shí)際震中的距離造成的偏差

1假設(shè)在一次地震中,一個(gè)距離震中100千米的測(cè)震儀記錄的地震最大振幅是30,此時(shí)標(biāo)準(zhǔn)地震的振幅是0001,計(jì)算這次地震的震級(jí)精確到01;

25級(jí)地震給人的震感已比較明顯,計(jì)算8級(jí)地震的最大振幅是5級(jí)地震的最大振幅的多少倍?

以下數(shù)據(jù)供參考:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“漸減數(shù)”是指每個(gè)數(shù)字比其左邊數(shù)字小的正整數(shù)(如98765),若把所有的五位漸減數(shù)按從小到大的順序排列,則第20個(gè)數(shù)為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面以任意角度截正方體,所截得的截面圖形可以是_____填上所有你認(rèn)為正確的序號(hào)

正三邊形 正四邊形 正五邊形 正六邊形 鈍角三角形 等腰梯形 非矩形的平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在充分競(jìng)爭(zhēng)的市場(chǎng)環(huán)境中,產(chǎn)品的定價(jià)至關(guān)重要,它將影響產(chǎn)品的銷量,進(jìn)而影響生產(chǎn)成本、品牌形象等某公司根據(jù)多年的市場(chǎng)經(jīng)驗(yàn),總結(jié)得到了其生產(chǎn)的產(chǎn)品A在一個(gè)銷售季度的銷量單位:萬(wàn)件與售價(jià)單位:元之間滿足函數(shù)關(guān)系,A的單件成本單位:元與銷量y之間滿足函數(shù)關(guān)系

當(dāng)產(chǎn)品A的售價(jià)在什么范圍內(nèi)時(shí),能使得其銷量不低于5萬(wàn)件?

當(dāng)產(chǎn)品A的售價(jià)為多少時(shí),總利潤(rùn)最大?注:總利潤(rùn)銷量售價(jià)單件成本

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上遞減,則a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)y=sin(2x+1)的圖象,只需把y=sin2x的圖象上所有的點(diǎn)(
A.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
B.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
C.向左平行移動(dòng)1個(gè)單位長(zhǎng)度
D.向右平行移動(dòng)1個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每盤(pán)游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂(lè),要么不出現(xiàn)音樂(lè):每盤(pán)游戲擊鼓三次后,出現(xiàn)一次音樂(lè)獲得10分,出現(xiàn)兩次音樂(lè)獲得20分,出現(xiàn)三次音樂(lè)獲得100分,沒(méi)有出現(xiàn)音樂(lè)則扣除200分(即獲得﹣200分).設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為 ,且各次擊鼓出現(xiàn)音樂(lè)相互獨(dú)立.
(1)設(shè)每盤(pán)游戲獲得的分?jǐn)?shù)為X,求X的分布列;
(2)玩三盤(pán)游戲,至少有一盤(pán)出現(xiàn)音樂(lè)的概率是多少?
(3)玩過(guò)這款游戲的許多人都發(fā)現(xiàn).若干盤(pán)游戲后,與最初分?jǐn)?shù)相比,分?jǐn)?shù)沒(méi)有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位招聘面試,每次從試題庫(kù)隨機(jī)調(diào)用一道試題,若調(diào)用的是A類型試題,則使用后該試題回庫(kù),并增補(bǔ)一道A類試題和一道B類型試題入庫(kù),此次調(diào)題工作結(jié)束;若調(diào)用的是B類型試題,則使用后該試題回庫(kù),此次調(diào)題工作結(jié)束.試題庫(kù)中現(xiàn)共有n+m道試題,其中有n道A類型試題和m道B類型試題,以X表示兩次調(diào)題工作完成后,試題庫(kù)中A類試題的數(shù)量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)設(shè)m=n,求X的分布列和均值(數(shù)學(xué)期望)

查看答案和解析>>

同步練習(xí)冊(cè)答案