18.經(jīng)過點A(3,0)、垂直于極軸的直線的極坐標方程是ρcosθ=3.

分析 設直線上的任意一點P(ρ,θ).PA⊥x軸,在Rt△OAP中,利用邊角關系即可得出.

解答 解:如圖所示,設直線上的任意一點P(ρ,θ).
PA⊥x軸,在Rt△OAP中,ρcosθ=3.
∴滿足條件的直線方程為:ρcosθ=3.
故答案為:ρcosθ=3.

點評 本題考查了直線的極坐標方程、直角三角形的邊角關系,考查了計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+1)-$\frac{x}{x+1}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)的極值;
(3)求證:對任意的正數(shù)a與b,恒有l(wèi)na-lnb≥1-$\frac{a}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.橢圓$\frac{x^2}{16}$+$\frac{y^2}{25}$=1的離心率為(  )
A.$\frac{4}{5}$B.$\frac{5}{4}$C.$\frac{3}{5}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知二階矩陣$M=[{\begin{array}{l}a&1\\ 1&b\end{array}}]$屬于特征值λ=5的一個特征向量為$\overrightarrow{e}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,則a+b=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓C與直線y=-x+2$\sqrt{2}$相切,圓心在x軸上,且該圓被直線y=x截得的弦長為4$\sqrt{2}$.
(1)求圓C的方程;
(2)過點N(-1,0)作斜率為k(k≠0)的直線l與圓C交于A,B兩點.若直線OA與OB的斜率之積為-(3+$\sqrt{2}$)k2,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.給定集合A、B,定義:A*B={x|x∈B或x∈A,但x∉A∩B},又已知A={0,1,2},B={1,2,3},則A*B=( 。
A.{0,1}B.{0,2}C.{0,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p:函數(shù)y=ln(x2+3)+$\frac{1}{{ln({x^2}+3)}}$的最小值是2;命題q:x>2是x>l的充分不必要條件.則下列命題為真命題的是(  )
A.p∧qB.?p∧?qC.?p∧qD.p∧?q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{ax-1}{{e}^{x}}$
(1)當a=1時,求函數(shù)f(x)的最值;
(2)若對任意的x∈($\frac{1}{2}$,1),f(x)>x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點.
(Ⅰ)求證:BD∥平面FGH.
(Ⅱ)若CF⊥BC,AB⊥BC,求證:BCD⊥EGH.

查看答案和解析>>

同步練習冊答案