已知i是虛數(shù)單位.復(fù)數(shù)z滿足z(1+i)=1,則|z|=
 
考點:復(fù)數(shù)求模
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和模的計算公式即可得出.
解答: 解:∵z(1+i)=1,∴z(1+i)(1-i)=1-i,化為2z=1-i,∴z=
1
2
-
1
2
i

∴|z|=
(
1
2
)2+(-
1
2
)2
=
2
2

故答案為:
2
2
點評:本題考查了復(fù)數(shù)的運(yùn)算法則和模的計算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓C過定點(1,0),且與直線x=-1相切.
(Ⅰ)求動圓圓心C的軌跡方程;
(Ⅱ)設(shè)A、B是軌跡C上異于原點O的兩個不同點,直線OA和OB的傾斜角分別為α和β,
 ①當(dāng)α+β=
π
2
時,求證直線AB恒過一定點M;
 ②若α+β為定值θ(0<θ<π),直線AB是否仍恒過一定點,若存在,試求出定點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“開門大吉”是某電視臺推出的游戲益智節(jié)目.選手面對1-4號4扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否人數(shù)如圖所示. 
(Ⅰ)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對歌曲名稱與否與年齡有關(guān)?說明你的理由.(下面的臨界值表供參考)
P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001
k 2.706 3.841 5.024 6.635 7.879 10.828
(Ⅱ)現(xiàn)計劃在這次場外調(diào)查中按年齡段選取6名選手,并抽取3名幸運(yùn)獎項,求至少有一人年齡在20~30歲之間的概率.(參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)F(-c,0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,直線l:x=-
a2
c
與x軸交于P點,MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點P的直線m與橢圓相交于不同的兩點A,B.
①證明:∠AFM=∠BFN;
②求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax的圖象在x=1處的切線與直線2x+y-1=0平行,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x、y滿足
y≤x
x+y≤2
y≥0
,那么z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,y>0,ln2x+ln8y=ln2,則
1
x
+
1
3y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角φ的終邊經(jīng)過點P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰兩條對稱軸之間的距離等于
π
3
,則f(
π
12
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
x+y≥1
x-y≥0
2x-y-2≥0
,則目標(biāo)函數(shù)z=3x-y的最小值為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案