圓C1:x2+y2+2x+2y-2=0與圓C2:x2+y2-6x+2y+6=0的公切線有且只有
 
條.
考點:兩圓的公切線條數(shù)及方程的確定
專題:直線與圓
分析:判斷兩圓的位置關(guān)系即可確定公切線的條數(shù).
解答: 解:兩圓的標準方程為(x+1)2+(y+1)2=4,(x-3)2+(y+1)2=4,
圓心坐標為C1(-1,-1),半徑R=2,圓心坐標為C2(3,-1),半徑r=2,
圓心距離C1C2=3-(-1)=4=R+r,
即兩圓相外切,
則公切線有3條,
故答案為:3
點評:本題主要考查兩圓公切線的條數(shù),判斷兩圓的位置關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)為了解高三女生的身高狀況,隨機抽取了100名女生,按身高分組得到頻率分布表為:
編號分組頻數(shù)頻率 
A組[150,155)50.050 
B組[155,160)m0.350 
C組[160,165)30
D組[165,170)x0.200 
E組[170,175)100.100 
(Ⅰ)求表中的m,n,x的值,并畫出頻率公布直方圖;
(Ⅱ)由于該校要組成女子籃球隊,決定在C、D、E組中用分層抽樣方法抽取6人,求各組抽取的人數(shù);
(Ⅲ)在(Ⅱ)中被抽取的6人中,隨機抽取2名隊員,求D組至少有一名學(xué)生被抽取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+1
(1)求數(shù)列{an}的通項公式;
(2)若{bn}的前n項和為Tn,且Tn+
2n
an+1
=c(c為常數(shù)),證明b2+b4+…+b2n
4
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年05月11日,深圳市遭遇了近6年來最強的特大暴雨襲擊,資料顯示,降雨強度分級如下表所示:
 日降雨量(厘米) 5~9.9 10~24.9≥25
 降雨等級 暴雨 大暴雨 特大暴雨
 標識   
深圳中學(xué)某社團為研究此次降雨過程中降雨強度特征,首先隨機從深圳市10個區(qū)選出羅湖、南山、寶安三個區(qū),然后采用分層抽樣的方式從三個區(qū)的40個(其中羅湖12個、南山16個、寶安12個)降雨觀測點中抽取10個,分別記錄降雨量,得到右側(cè)的莖葉圖.
(1)求該社團從寶安區(qū)抽取了多少個觀測點?
(2)估計本次深圳降雨的平均日降雨量和日降雨量的中位數(shù);
(3)若從降雨為特大暴雨的觀測點中隨機選3個,求至少有1個觀測點日降雨量大于34厘米的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向如圖中邊長為2的正方形中,隨機撒一粒黃豆,則黃豆落在圖中陰影部分的概率為(  )
A、
1+2ln2
4
B、
ln2
2
C、
2+ln2
4
D、
2-ln2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過點P(-2,4)并且以兩圓x2+y2-6x=0和x2+y2=4的公共弦為一條弦的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}(n∈N*)中的前8項是一個以2為公比,以
1
4
為首項的等比數(shù)列,從第8項起是一個等差數(shù)列,公差為-3,求:
(1)數(shù)列{an}的通項公式;
(2)數(shù)列{an}的前n項和Sn的公式;
(3)當(dāng)n為何值時,Sn<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個數(shù)cos
3
2
,sin
1
10
,-cos
7
4
的大小關(guān)系是( 。
A、cos
3
2
>sin
1
10
>-cos
7
4
B、cos
3
2
>-cos
7
4
>sin
1
10
C、cos
3
2
<sin
1
10
<-cos
7
4
D、-cos
7
4
<cos
3
2
<sin
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-2,5),
b
=(-1,7),實數(shù)x,y滿足x
a
+y
b
=(-1,2),求x,y.

查看答案和解析>>

同步練習(xí)冊答案