已知直線(xiàn)l:y=x+m,m∈R.
(1)若以點(diǎn)M(2,0)為圓心的圓與直線(xiàn)l相切于點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程;
(2)若直線(xiàn)l關(guān)于x軸對(duì)稱(chēng)的直線(xiàn)為l′,問(wèn)直線(xiàn)l′與拋物線(xiàn)C:x2=4y是否相切?說(shuō)明理由.
(1)(x-2)2+y2=8.(2)當(dāng)m=1時(shí),直線(xiàn)l′與拋物線(xiàn)C相切.
當(dāng)m≠1時(shí),直線(xiàn)l′與拋物線(xiàn)C不相切
【解析】法一:(1)依題意,點(diǎn)P的坐標(biāo)為(0,m).
因?yàn)?/span>MP⊥l,
所以×1=-1,
解得m=2,即點(diǎn)P的坐標(biāo)為(0,2).
從而圓的半徑r=|MP|==2.?
故所求圓的方程為(x-2)2+y2=8.
(2)因?yàn)橹本(xiàn)l的方程為y=x+m,
所以直線(xiàn)l′的方程為y=-x-m.
由得x2+4x+4m=0.
Δ=42-4×4m=16(1-m).
①當(dāng)m=1,即Δ=0時(shí),直線(xiàn)l′與拋物線(xiàn)C相切;
②當(dāng)m≠1,即Δ≠0時(shí),直線(xiàn)l′與拋物線(xiàn)C不相切.
綜上,
.
法二(1)設(shè)所求圓的半徑為r,
則圓的方程可設(shè)為(x-2)2+y2=r2.
依題意,所求圓與直線(xiàn)l:x-y+m=0相切于點(diǎn)P(0,m),
則解得
所以所求圓的方程為(x-2)2+y2=8.
(2)同法一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練選修4-2練習(xí)卷(解析版) 題型:解答題
設(shè)矩陣M= (其中a>0,b>0).
(1)若a=2,b=3,求矩陣M的逆矩陣M-1;
(2)若曲線(xiàn)C:x2+y2=1在矩陣M所對(duì)應(yīng)的線(xiàn)性變換作用下得到曲線(xiàn)C′:+y2=1,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-7-1練習(xí)卷(解析版) 題型:填空題
用數(shù)字2,3組成四位數(shù),且數(shù)字2,3至少都出現(xiàn)一次,這樣的四位數(shù)共有________個(gè).(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-6-3練習(xí)卷(解析版) 題型:選擇題
若雙曲線(xiàn)=1(a>0,b>0)與直線(xiàn)y=x無(wú)交點(diǎn),則離心率e的取值范圍是( ).
A.(1,2) B.(1,2] C.(1,) D.(1,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-6-2練習(xí)卷(解析版) 題型:選擇題
拋物線(xiàn)C1:y=x2(p>0)的焦點(diǎn)與雙曲線(xiàn)C2:-y2=1的右焦點(diǎn)的連線(xiàn)交C1于第一象限的點(diǎn)M.若C1在點(diǎn)M處的切線(xiàn)平行于C2的一條漸近線(xiàn),則p=( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-6-1練習(xí)卷(解析版) 題型:填空題
直線(xiàn)y=2x+3被圓x2+y2-6x-8y=0所截得的弦長(zhǎng)等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-5-3練習(xí)卷(解析版) 題型:解答題
已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分別是CE,CF的中點(diǎn).
(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線(xiàn)CF與平面BDGH所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-5-2練習(xí)卷(解析版) 題型:選擇題
如圖所示,四棱錐S-ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中不正確的是 ( ).
A.AC⊥SB
B.AB∥平面SCD
C.SA與平面SBD所成的角等于SC與平面SBD所成的角
D.AB與SC所成的角等于DC與SA所成的角
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪專(zhuān)題復(fù)習(xí)知能提升演練1-3-2練習(xí)卷(解析版) 題型:填空題
已知△ABC的三邊長(zhǎng)成公比為的等比數(shù)列,則其最大角的余弦值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com