精英家教網 > 高中數學 > 題目詳情

【題目】給出下列命題中

非零向量滿足,則的夾角為;

0的夾角為銳角的充要條件;

必定是直角三角形;

④△ABC的外接圓的圓心為O,半徑為1,若,,則向量在向量方向上的投影為.

以上命題正確的是 __________ (注:把你認為正確的命題的序號都填上)

【答案】③④

【解析】對于 由向滿足,由向量減法的三角形法則,知向量, , 組成一個等邊三角形,向量, 夾角為,又由向量加法得平行四邊形法則,以, 為鄰邊的平行四邊形為菱形,所以的夾角為,故① 正 確;

對于②,當時,不成立;

對于③由

所以,即,所以是直角三角形;

對于④由題目信息可作出如右圖所示,三角形AOC為等邊三角形,所以∠ACB=,且BC為直徑,所以∠ABC=

在直角三角形ABCBC=2,AC=1,所以AB=

則向量在向量方向上的投影=.

故④正確.

綜上可知命題①③④正確.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設動點P在棱長為1的正方體ABCD﹣A1B1C1D1的對角線BD1上,記 .當∠APC為鈍角時,則λ的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某生態(tài)園將一塊三角形地的一角開辟為水果園,已知角, 的長度均大于200米,現在邊界處建圍墻,在處圍竹籬笆.

(1)若圍墻總長度為200米,如何可使得三角形地塊面積最大?

(2)已知竹籬笆長為米, 段圍墻高1米, 段圍墻高2米,造價均為每平方米100元,求圍墻總造價的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,設向量, ,其中的兩個內角.

(1)若,求證: 為直角;

2)若,求證: 為銳角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=(
A.0
B.﹣100
C.100
D.10200

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若曲線在點處的切線方程為,求a,b的值;

2)如果是函數的兩個零點, 為函數的導數,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結果如下:
(Ⅰ)在4月份任取一天,估計西安市在該天不下雨的概率;
(Ⅱ)西安市某學校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設A={﹣4,2a﹣1,a2},B={a﹣1,1﹣a,9},已知A∩B={9},求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}滿足a3=7,a5+a7=26,數列{an}的前n項和為Sn
(Ⅰ)求an;
(Ⅱ)設bn= ,求數列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案