19.已知四棱錐A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F(xiàn)為AD的中點.
(Ⅰ)求證:EF∥面ABC;
(Ⅱ)求三棱錐E-ACD的體積.

分析 (Ⅰ)取AC中點G,連接FG、BG,根據三角形中位線定理,得到四邊形FGBE為平行四邊形,進而得到EF∥BG,再結合線面平行的判定定理得到EF∥面ABC;
(Ⅱ)證明BG⊥面ADC,可得EF⊥面ADC,即可求出三棱錐E-ACD的體積.

解答 (Ⅰ)證明:取AC中點G,連結FG、BG
∵F,G分別是AD,AC的中點,∴FG∥CD,且FG=$\frac{1}{2}$DC=1.
∵BE∥CD∴FG與BE平行且相等,∴EF∥BG. 
∵EF?平面ABC,BG?平面ABC,
∴EF∥面ABC…(6分)
(Ⅱ)解:∵△ABC為等邊三角形∴BG⊥AC,
又∵DC⊥面ABC,BG?面ABC∴DC⊥BG,
∴BG垂直于面ADC的兩條相交直線AC,DC,∴BG⊥面ADC…(9分)
∵EF∥BG,∴EF⊥面ADC,
連結EC,三棱錐E-ACD的體積V=$\frac{1}{3}×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{6}$….(12分)

點評 本題考查的知識點是直線與平面平行的判定,棱錐的體積,其中熟練掌握空間線面平行或垂直的判定、性質、定義、幾何特征是解答此類問題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.在下列給出的命題中,所有正確命題的序號為②③④.
①若$\overrightarrow{a}•\overrightarrow$>0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;
②對?x,y∈R,若x+y≠0,則x≠1,或y≠-1;
③若實數(shù)x,y滿足x2+y2=1,則$\frac{y}{x+2}$的最大值為$\frac{\sqrt{3}}{3}$;
④函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)的圖象關于點($\frac{2π}{3}$,0)對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.長方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E為AB的中點,CE=3,異面直線A1C1與CE所成角的余弦值為$\frac{5\sqrt{3}}{9}$,且四邊形ABB1A1為正方形,則球O的直徑為(  )
A.4B.$\sqrt{51}$C.4或$\sqrt{51}$D.4或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知如圖所示的三棱錐D-ABC的四個頂點均在球O的球面上,△ABC和△DBC所在的平面互相垂直,AB=3,AC=$\sqrt{3}$,BC=CD=BD=2$\sqrt{3}$,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為$\frac{{\sqrt{6}}}{4}$.
(1)若F是線段CD的中點,證明:EF⊥平面DBC;
(2)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 圖象上有且僅有四個不同的點關于直線y=e的對稱點在函數(shù)g(x)=kx+2e+1的圖象上,則實數(shù)k的取值范圍為( 。
A.(1,2)B.(-1,0)C.(-2,-1)D.(-6,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ax-$\frac{1}{2}$x2-bln(x+1)(a>0),g(x)=ex-x-1,曲線y=f(x)與y=g(x)在原點處有公共的切線.
(1)若x=0為f(x)的極大值點,求f(x)的單調區(qū)間(用a表示);
(2)若?x≥0,g(x)≥f(x)+$\frac{1}{2}$x2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,已知直四棱柱ABCD-A1B1C1D1的底面中,DB=4,∠DAB=∠DCB=90°,∠BDC=∠BDA=60°.
(1)求直線AC與平面BB1C1C所成的角正弦值;
(2)若異面直線BC1與AC所成的角的余弦值為$\frac{{\sqrt{3}}}{4}$,求二面角B-A1C1-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y≥a恒成立,則實數(shù)a的最大值為(  )
A.2B.4C.6D.8

查看答案和解析>>

同步練習冊答案