直線l:y=k(x+2
2
)與圓x2+y2=4相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),△ABO的面積為S,求函數(shù)S=f(k)的表達(dá)式.
分析:原點(diǎn)到直線l的距離d=
2
2
|k|
1+k2
,弦長|AB|=2
|OA|2-d2
=2
4-
8k2
1+k2
,由此能夠求出,△ABO的面積為S,進(jìn)而得到函數(shù)S=f(k)的表達(dá)式.
解答:解:原點(diǎn)到直線l的距離d=
2
2
|k|
1+k2
,
弦長|AB|=2
|OA|2-d2
=2
4-
8k2
1+k2
,
所以S=
1
2
×2
4-
8k2
1+k2
×
2
2
|k|
1+k2
=
4
2
k2(1-k2)
1+k2
,
即f(k)=
4
2
k2(1-k2)
1+k2
(-1<k<1,且k≠0).
點(diǎn)評:本題考查直線和圓的位置關(guān)系和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,避免不必要的錯(cuò)誤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直角三角形PAB的直角頂點(diǎn)為B,點(diǎn)P的坐標(biāo)為(3,0),點(diǎn)B在y軸上,點(diǎn)A在x軸的負(fù)半軸上,在BA的延長線上取一點(diǎn)C,使
BC
=3
BA

(1)當(dāng)B在y軸上移動時(shí),求動點(diǎn)C的軌跡方程;
(2)若直線l:y=k(x-1)與點(diǎn)C的軌跡交于M、N兩點(diǎn),設(shè)D(-1,0),當(dāng)∠MDN為銳角時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=k(x-2)+2與圓x2+y2-2x-2y=0有兩個(gè)不同的公共點(diǎn),則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•成都三模)已知O為坐標(biāo)原點(diǎn),點(diǎn)E、F的坐標(biāo)分別為(-
2
,0)、(
2
,0),點(diǎn)A、N滿足
AE
=2
3
,
ON
=
1
2
(
OA
+
OF
)
,過點(diǎn)N且垂直于AF的直線交線段AE于點(diǎn)M,設(shè)點(diǎn)M的軌跡為C.
(1)求軌跡C的方程;
(2)若軌跡C上存在兩點(diǎn)P和Q關(guān)于直線l:y=k(x+1)(k≠0)對稱,求k的取值范圍;
(3)在(2)的條件下,設(shè)直線l與軌跡C交于不同的兩點(diǎn)R、S,對點(diǎn)B(1,0)和向量a=(-
3
,3k),求
BR
BS
-|a|2
取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+1)2+(y-2)2=4
(1)若直線l:y=k(x-2)與圓C有且只有一個(gè)公共點(diǎn),求直線l的斜率k的值;
(2)若直線m:y=kx+2被圓C截得的弦AB滿足OA⊥OB(O是坐標(biāo)原點(diǎn)),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x,O為坐標(biāo)原點(diǎn),動直線l:y=k(x+2)與拋物線C交于不同兩點(diǎn)A,B
(1)求證:
OA
OB
為常數(shù);
(2)求滿足
OM
=
OA
+
OB
的點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案