【題目】已知四棱錐,底面為菱形,,為上的點(diǎn),過(guò)的平面分別交,于點(diǎn),,且平面.
(1)證明:;
(2)當(dāng)為的中點(diǎn),,與平面所成的角為,求與平面所成角的正弦值.
【答案】(1)見(jiàn)證明(2)
【解析】
(1)連結(jié)、且,連結(jié),先證明平面,可得,再利用線面平行的性質(zhì)定理證明,從而可得結(jié)論;(2)利用(1)可證明平面,利用與平面所成的角為求出線段間的等量關(guān)系,以,,分別為,,軸,建立空間直角坐標(biāo)系,求出,再利用向量垂直數(shù)量積為零列方程求出平面的法向量,由空間向量夾角余弦公式可得結(jié)果.
(1)
連結(jié)、且,連結(jié).
因?yàn)椋?/span>為菱形,所以,,
因?yàn)椋?/span>,所以,,
因?yàn)椋?/span>且、平面,
所以,平面,
因?yàn)椋?/span>平面,所以,,
因?yàn)椋?/span>平面,
且平面平面,
所以,,
所以,.
(2)
由(1)知且,
因?yàn)?/span>,且為的中點(diǎn),
所以,,所以,平面,
所以與平面所成的角為,所以,
所以,,,因?yàn)椋?/span>,所以,.
以,,分別為,,軸,如圖所示建立空間直角坐標(biāo)系
記,所以,,,,,,,,
所以, ,,
記平面的法向量為,所以,即,
令,解得,,所以,,
記與平面所成角為,所以,.
所以,與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、為曲線上兩點(diǎn),與的橫坐標(biāo)之和為.
(1)求直線的斜率;
(2)設(shè)弦的中點(diǎn)為,過(guò)點(diǎn)、分別作拋物線的切線,則兩切線的交點(diǎn)為,過(guò)點(diǎn)作直線,交拋物線于、兩點(diǎn),連接、.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位,得到函數(shù)的圖像.
(1)當(dāng)時(shí),求的值域
(2)令,若對(duì)任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫(xiě)出的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值及此時(shí)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),其中,,為實(shí)常數(shù)
(1)若時(shí),討論函數(shù)的單調(diào)性;
(2)若時(shí),不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若,當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開(kāi)始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過(guò)連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長(zhǎng)度忽略不計(jì)).假設(shè)該沙漏每秒鐘漏下的沙,且細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆.以下結(jié)論正確的是( )
A.沙漏中的細(xì)沙體積為
B.沙漏的體積是
C.細(xì)沙全部漏入下部后此錐形沙堆的高度約為2.4cm
D.該沙漏的一個(gè)沙時(shí)大約是1985秒()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn).
(1)求橢圓的方程,并求其離心率;
(2)過(guò)點(diǎn)作軸的垂線,設(shè)點(diǎn)為第四象限內(nèi)一點(diǎn)且在橢圓上(點(diǎn)不在直線上),點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,直線與交于另一點(diǎn).設(shè)為原點(diǎn),判斷直線與直線的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由我國(guó)引領(lǐng)的5G時(shí)代已經(jīng)到來(lái),5G的發(fā)展將直接帶動(dòng)包括運(yùn)營(yíng)、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對(duì)增長(zhǎng)產(chǎn)生直接貢獻(xiàn),并通過(guò)產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動(dòng)國(guó)民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對(duì)今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測(cè).結(jié)合下圖,下列說(shuō)法正確的是( )
A.5G的發(fā)展帶動(dòng)今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加
B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長(zhǎng)較快,后期放緩
C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位
D.信息服務(wù)商與運(yùn)營(yíng)商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢(shì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)的直線與拋物線交于,兩點(diǎn),以,兩點(diǎn)為切點(diǎn)分別作拋物線的切線,,設(shè)與交于點(diǎn).
(1)求;
(2)過(guò),的直線交拋物線于,兩點(diǎn),證明:,并求四邊形面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com