14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\sqrt{3}$x,左、右焦點分別為F1((-c,0),F(xiàn)2(c,0).且雙曲線被直線x=-c所截得的弦長為6.
(1)求雙曲線C的方程;
(2)若過F2且傾斜角為135°的直線l交C于A,B兩點,求△F1AB的面積.

分析 (1)由雙曲線被直線x=-c所截得的弦長為6,得$\frac{^{2}}{a}$=3,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\sqrt{3}$x,得$\frac{a}$=$\sqrt{3}$,求出a,b,即可求雙曲線C的方程;
(2)設(shè)A(x1,y1),B(x2,y2),直線l方程:y=-(x-2).由雙曲線方程與直線l方程消去y,得關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系,即可求出△F1AB的面積.

解答 解:(1)x=-c時,y=±$\frac{^{2}}{a}$,
∵雙曲線被直線x=-c所截得的弦長為6,
∴$\frac{^{2}}{a}$=3,
∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\sqrt{3}$x,
∴$\frac{a}$=$\sqrt{3}$,
∴a=1,b=$\sqrt{3}$,
∴雙曲線C的方程為${x}^{2}-\frac{{y}^{2}}{3}$=1;
(2)設(shè)A(x1,y1),B(x2,y2),由右焦點F2(2,0),可得直線l方程:y=-(x-2)
代入雙曲線方程,消去y,得2x2+4x-7=0
由根與系數(shù)的關(guān)系得:x1+x2=-2,x1x2=-$\frac{7}{2}$,y1-y2=-(x1-x2
∴△F1AB的面積S=c|y1-y2|=2||x1-x2|=2$\sqrt{4+4×\frac{7}{2}}$=6$\sqrt{2}$.

點評 本題考查求雙曲線的方程并探索焦點弦截得的三角形面積問題,著重考查了雙曲線的標(biāo)準(zhǔn)方程、簡單幾何性質(zhì)和直線與雙曲線位置關(guān)系等知識點,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在四面體PABC中,PA、PB、PC兩兩垂直,且均相等,E是AB的中點,則異面直線AC與PE所成的角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在長方體ABCD-A1B1C1D1中,DA=2,DC=3,DD1=4,M,N,E,F(xiàn)分別是棱A1D1,A1B1、,D1C1,B1C1的中點.
求證:平面AMN∥平面EFBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知雙曲線x2-$\frac{{y}^{2}}{4}$=1的左右焦點分別是F1,F(xiàn)2,過F2的直線交雙曲線右支于A、B兩點且A在x軸上方,證明:$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等比數(shù)列{an}的所有項均為正數(shù),a1=1,且a5=a4+2a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{an+1-λan}的前n項和為Sn,若Sn=2n-1(n∈N*),求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)$\overrightarrow{a}$=(10,-4),$\overrightarrow$=(3,1),$\overrightarrow{c}$=(-2,3).
(1)求證:$\overrightarrow$,$\overrightarrow{c}$可以作為表示同一平面內(nèi)的所有向量的一組基底;
(2)用$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,CD=2,底面ABCD為梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,點E在棱PB上,且PE=2EB.
(1)求證:PD∥平面EAC;
(2)求直線PD與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2sin(3x-$\frac{π}{3}$).
(1)若函數(shù)y=af(x)-b的最大值為4,最小值為2,求a,b的值;
(2)當(dāng)x∈[0,$\frac{π}{6}$]時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=(ax-a-x)($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)的圖象關(guān)于(  )
A.y軸對稱B.直線y=-x對稱C.坐標(biāo)原點對稱D.直線y=x對稱

查看答案和解析>>

同步練習(xí)冊答案