【題目】(本題滿分16分)第1小題5分,第2小題5分,第3小題6分.
已知函數(shù),其中為常數(shù),且 .
(1) 若是奇函數(shù),求的取值集合;
(2) 當 時,設(shè)的反函數(shù)為,且函數(shù)的圖像與的圖像關(guān)于對稱,求的取值集合;
(3) 對于問題(1)(2)中的 ,當時,不等式恒成立,求的取值范圍.
【答案】(1) (2) (3)
【解析】試題分析: (1)由求得的值,在驗證是奇函數(shù)即可得結(jié)果;(2)根據(jù)指數(shù)對數(shù)的運算法則可得,從而可得,求其反函數(shù)可得的解析式,進而可得結(jié)果;(3)根據(jù)對數(shù)函數(shù)的單調(diào)性,結(jié)合對數(shù)函數(shù)的定義域,列不等式組求解即可.
試題解析:(1)由必要條件
所以 ,
下面 證充分性,當a=-1時, ,
任取,
恒成立,
由 。
(2)法一,當a=-1時,由
互換x,y得
則,
從而
所以
即
法二、當 時,由
互換 得
所以
即
(3)原問題轉(zhuǎn)化為
恒成立,則
或
則 的取值范圍為 .
科目:高中數(shù)學 來源: 題型:
【題目】給出50個數(shù),1,2,4,7,11,…,其規(guī)律是:第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,…,以此類推.要求計算這50個數(shù)的和.將右邊給出的程序框圖補充完整,
(1)___________________ (2)_______________________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長為2的線段AB中點為C,當線段AB的兩個端點A和B分別在x軸和y軸上運動時,C點的軌跡為曲線C1;
(1)求曲線C1的方程;
(2)直線 ax+by=1與曲線C1相交于C、D兩點(a,b是實數(shù)),且△COD是直角三角形(O是坐標原點),求點P(a,b)與點(0,1)之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為,將曲線:(為參數(shù)),經(jīng)過伸縮變換后得到曲線.
(1)求曲線的參數(shù)方程;
(2)若點的曲線上運動,試求出到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司欲制作容積為16米3 , 高為1米的無蓋長方體容器,已知該容器的底面造價是每平方米1000元,側(cè)面造價是每平方米500元,記該容器底面一邊的長為x米,容器的總造價為y元.
(1)試用x表示y;
(2)求y的最小值及此時該容器的底面邊長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù) ,集合M={x|f(x)=0}={x1 , x2 , x3 , x4 , x5}N* , 設(shè)c1≥c2≥c3 , 則c1﹣c3=( )
A.6
B.8
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,A,B的坐標分別是 ,點G是△ABC的重心,y軸上一點M滿足GM∥AB,且|MC|=|MB|. (Ⅰ)求△ABC的頂點C的軌跡E的方程;
(Ⅱ)直線l:y=kx+m與軌跡E相交于P,Q兩點,若在軌跡E上存在點R,使四邊形OPRQ為平行四邊形(其中O為坐標原點),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0)在其定義域上為奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com