【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線為參數(shù)),經(jīng)過伸縮變換后得到曲線.

1)求曲線的參數(shù)方程;

2)若點(diǎn)的曲線上運(yùn)動(dòng),試求出到直線的距離的最小值.

【答案】1為參數(shù));(2

【解析】試題分析:(1)將曲線化為普通方程,可得,再由伸縮變換,得到普通方程,進(jìn)而可求曲線的參數(shù)方程;(2)曲線的極坐標(biāo)方程,化為直角坐標(biāo)方程:,在點(diǎn)到直線的距離公式,即可求解距離的最小值.

試題解析:(1)將曲線為參數(shù))化為,

由伸縮變換化為,代入圓的方程得,

,可得參數(shù)方程為為參數(shù)).

2)曲線的極坐標(biāo)方程,化為直角坐標(biāo)方程:,

點(diǎn)的距離,

點(diǎn)的距離的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax﹣2alnx(a∈R),則下列說法正確的是 ①當(dāng)a<0時(shí),函數(shù)y=f(x)有零點(diǎn);
②若函數(shù)y=f(x)有零點(diǎn),則a<0;
③存在a>0,函數(shù)y=f(x)有唯一的零點(diǎn);
④若函數(shù)y=f(x)有唯一的零點(diǎn),則a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;

(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,當(dāng)時(shí),若內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點(diǎn)”.當(dāng)時(shí),試問函數(shù)是否存在“轉(zhuǎn)點(diǎn)”?若存在,求出轉(zhuǎn)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各圖中,不可能表示函數(shù)y=f(x)的圖象的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,函數(shù) ,且圖象上一個(gè)最高點(diǎn)為最近的一個(gè)最低點(diǎn)的坐標(biāo)為 .

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)設(shè)為常數(shù),判斷方程在區(qū)間上的解的個(gè)數(shù);

(Ⅲ)在銳角中,若,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某問答游戲的規(guī)則是:共5道選擇題,基礎(chǔ)分為50分,每答錯(cuò)一道題扣10分,答對(duì)不扣分.試分別用列表法、圖象法、解析法表示一個(gè)參與者的得分y與答錯(cuò)題目道數(shù)x(x∈{0,1,2,3,4,5})之間的函數(shù)關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分16分)第1小題5分,第2小題5分,第3小題6分.

已知函數(shù),其中為常數(shù),且

(1) 若是奇函數(shù),求的取值集合;

(2) 當(dāng) 時(shí),設(shè)的反函數(shù)為,且函數(shù)的圖像與的圖像關(guān)于對(duì)稱,求的取值集合

(3) 對(duì)于問題(1)(2)中的 ,當(dāng)時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)與雙曲線的右焦點(diǎn)的連線交于第一象限的點(diǎn),在點(diǎn)處的切線平行于的一條漸近線,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列函數(shù):①f(x)= ,g(x)=x+1;②f(x)=|x|,g(x)= ;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函數(shù)的是(
A.①②③
B.①③
C.②③
D.②

查看答案和解析>>

同步練習(xí)冊(cè)答案