15.已知全集U={0,1,2,3,4,5},集合A=∅,則∁UA={0,1,2,3,4,5}.

分析 利用補集的定義求解即可.

解答 解:全集U={0,1,2,3,4,5},集合A=∅,則∁UA={0,1,2,3,4,5}
故答案為:{0,1,2,3,4,5}.

點評 本題考查補集的定義的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若R上的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,且當(dāng)0<x≤1時,f(x)=log2x,則方程f(x)=f(0)+$\frac{1}{4}$在區(qū)間(2014,2016)內(nèi)的所有實數(shù)根之和為(  )
A.4028B.4030C.4032D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義集合A-B={x|x∈A且x∉B},若集合A={1,3,4,5},B={2,3,4},則集合A-B的元素個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列說法中正確的是(3)(4).
(1)y=$\sqrt{{x}^{2}}$與y=$\root{3}{{x}^{3}}$是相等的函數(shù).  
(2)奇函數(shù)的圖象一定過原點.
(3)函數(shù)一定是映射,映射不一定是函數(shù).
(4)定義在R上的奇函數(shù)在(0,+∞)上有最大值M,則在(-∞,0)上一定有最小值-M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點A、B、C、D在同一球面上,AB=BC=$\sqrt{2}$,AC=2,DB⊥平面ABC,四面體ABCD的體積為$\frac{2}{3}$,則這個球的體積為(  )
A.B.$\frac{8\sqrt{2}π}{3}$C.16πD.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F和A(0,b)的連線與C的一條漸近線相交于點P,且$\overrightarrow{PF}$=2$\overrightarrow{AP}$,則雙曲線C的離心率為(  )
A.3B.$\sqrt{3}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.甲乙兩人投球命中率分別為0.5、0.4,甲乙兩人各投一次,恰好命中一次的概率為( 。
A.0.5B.0.4C.0.2D.0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=4sinθ
(1)直線l的參數(shù)方程化為極坐標(biāo)方程;
(2)求直線l與曲線C交點的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{3x}{2x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an),n∈N*
(1)求a2,a3,a4的值;
(2)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(3)設(shè)數(shù)列{bn}滿足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2014}{2}$對一切n∈N*成立,求最小正整數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案