(本題滿分14分)
已知函數(shù)的圖象關于原點對稱,且.
(1)求函數(shù)的解析式;
(2)若在[-1,1]上是增函數(shù),求實數(shù)的取值范圍

(1)(2)

解析試題分析:解:(Ⅰ)設函數(shù)的圖象上任意一點關于原點的對稱點為,則
 
∵點在函數(shù)的圖象上
 
(Ⅱ)


。
ⅱ)

考點:函數(shù)的解析式以及函數(shù)單調性
點評:解決的關鍵是利用函數(shù)的圖像的對稱性來求解解析式,實際上就是點的坐標的求解,同時能結合解析式來分析單調性,屬于基礎題。對稱性是高考中的一個熱點。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

對于在區(qū)間上有意義的兩個函數(shù),如果對于任意的,都有,則稱在區(qū)間上是接近的兩個函數(shù),否則稱它們在上是非接近的兩個函數(shù),F(xiàn)有兩個函數(shù),且都有意義.
(1)求的取值范圍;
(2)討論在區(qū)間上是否是接近的兩個函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)設時,求函數(shù)極大值和極小值;
(2)時討論函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是定義在上的偶函數(shù),且時,。
(1)求;
(2)求函數(shù)的表達式;
(3)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),,其中
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調性的定義證明:當時,在區(qū)間上為減函數(shù);
(3)當,函數(shù)的圖象恒在函數(shù)圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若是定義域上的單調函數(shù),求的取值范圍;
(2)若在定義域上有兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)是定義在上的偶函數(shù),已知當時,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調遞增區(qū)間;
(3)求在區(qū)間上的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)
已知函數(shù)是定義在上的偶函數(shù),當時,

(1)求函數(shù)的解析式,并畫出函數(shù)的圖像。
(2)根據(jù)圖像寫出的單調區(qū)間和值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù),且方程有兩個實根.
(1)求函數(shù)的解析式;
(2)設,解關于的不等式

查看答案和解析>>

同步練習冊答案