(本題滿分14分)
已知函數(shù)和的圖象關于原點對稱,且.
(1)求函數(shù)的解析式;
(2)若在[-1,1]上是增函數(shù),求實數(shù)的取值范圍
科目:高中數(shù)學 來源: 題型:解答題
對于在區(qū)間上有意義的兩個函數(shù)和,如果對于任意的,都有,則稱與在區(qū)間上是接近的兩個函數(shù),否則稱它們在上是非接近的兩個函數(shù),F(xiàn)有兩個函數(shù),,且與在都有意義.
(1)求的取值范圍;
(2)討論與在區(qū)間上是否是接近的兩個函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù),,其中.
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調性的定義證明:當時,在區(qū)間上為減函數(shù);
(3)當,函數(shù)的圖象恒在函數(shù)圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)若是定義域上的單調函數(shù),求的取值范圍;
(2)若在定義域上有兩個極值點、,證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)已知函數(shù)是定義在上的偶函數(shù),已知當時,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調遞增區(qū)間;
(3)求在區(qū)間上的值域。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)
已知函數(shù)是定義在上的偶函數(shù),當時,
(1)求函數(shù)的解析式,并畫出函數(shù)的圖像。
(2)根據(jù)圖像寫出的單調區(qū)間和值域。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com