分析 (Ⅰ)由已知數(shù)列遞推式可得(an+1+an)(an+1-an)=2(an+1+an),又an>0,得an+1-an=2,可得數(shù)列{an}是公差為2的等差數(shù)列,代入等差數(shù)列的通項公式得答案;
(Ⅱ)把求數(shù)列{an}的通項公式代入$_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$,然后利用裂項相消法求數(shù)列{bn}的前n項和Tn.
解答 (Ⅰ)證明:由an+1(an+1-2)=an(an+2),得${{a}_{n+1}}^{2}-{{a}_{n}}^{2}=2{a}_{n+1}+2{a}_{n}$,
∴(an+1+an)(an+1-an)=2(an+1+an),
又an>0,∴an+1+an>0,則an+1-an=2.
∴數(shù)列{an}是公差為2的等差數(shù)列.
又S3=12,∴3a1+6=12,得a1=2.
∴an=2+2(n-1)=2n;
(Ⅱ)解:由(Ⅰ)知,$_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n×2(n+1)}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴Tn=b1+b2+…+bn=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}(1-\frac{1}{n+1})=\frac{n}{4n+4}$.
點評 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓練了裂項相消法求數(shù)列的前n項和,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | -1或2 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{6}$或$\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | -1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 192種 | B. | 144種 | C. | 96種 | D. | 72種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{π}{3}$,$\frac{2π}{3}$] | B. | (0,$\frac{π}{3}$] | C. | [$\frac{2π}{3}$,π) | D. | (0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com