A. | $\frac{7}{2}$,3 | B. | 5,$\frac{7}{2}$ | C. | 5,3 | D. | 4,3 |
分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最值.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點B時,直線y=-x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{y=x+1}\\{2x+y=7}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即B(2,3),
代入目標(biāo)函數(shù)z=x+y得z=2+3=5.
即目標(biāo)函數(shù)z=x+y的最大值為5.
當(dāng)直線y=-x+z經(jīng)過點A時,直線y=-x+z的截距最小,
此時z最。
由$\left\{\begin{array}{l}{y=2}\\{y=x+1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
代入目標(biāo)函數(shù)z=x+y得z=1+2=3.
即目標(biāo)函數(shù)z=x+y的最小值為3.
故選:C
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\sqrt{2},+∞)$ | B. | (-∞,-1) | C. | (5,+∞) | D. | (-1,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{13}$ | C. | 1 | D. | $-\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com